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Emotion Recognition From Full-Body Motion
Using Multiscale Spatio-Temporal Network
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Abstract—Body motion is an important channel for human communication and plays a crucial role in automatic emotion recognition.
This work proposes a multiscale spatio-temporal network, which captures the coarse-grained and fine-grained affective information
conveyed by full-body motion and decodes the complex mapping between emotion and body movement. The proposed method
consists of three main components. First, a scale selection algorithm based on the pseudo-energy model is presented, which guides
our network to focus not only on long-term macroscopic body expressions, but also on short-term subtle posture changes. Second, we
propose a hierarchical spatio-temporal network that can jointly process posture covariance matrices and 3D posture images with
different time scales, and then hierarchically fuse them in a coarse-to-fine manner. Finally, a spatio-temporal iterative (ST-ITE) fusion
algorithm is developed to jointly optimize the proposed network. The proposed approach is evaluated on five public datasets. The
experimental results show that the introduction of the energy-based scale selection algorithm significantly enhances the learning
capability of the network. The proposed ST-ITE fusion algorithm improves the generalization and convergence of our model. The
average classification results of the proposed method exceed 86% on all datasets and outperform the state-of-the-art methods.

Index Terms—Emotion recognition, full-body motion, multiscale features, covariance matrix, Riemannian network, convolutional neural
network.
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1 INTRODUCTION

AUTOMATIC emotion recognition enables machines to
communicate with humans in a natural and empa-

thetic way, which is essential for improving efficiency and
user experience in human-computer interaction (HCI) [1]. In
recent decades, although many works have focused on vocal
expressions, facial expressions and electroencephalography
(EEG), emotion recognition based on full-body motion has
not been extensively explored.

Full-body motion is the movement of the extremities,
torso and other body parts, which is one of the most
fundamental and natural non-verbal expression channels
during affective communication [2]. Some special mapping
relationships between body expressions and emotions have
been reported; for example, the activities and dynamics of
body movements are lower during low arousal emotions
(e.g., sadness, relaxation) and higher during high arousal
emotions (e.g., joy, anger) [3]. Furthermore, because of the
large area of the human trunk, researchers can capture full-
body motions in a nonintrusive manner at long distances,
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which makes it possible to recognize emotions in the wild
[4]. Therefore, the modeling of full-body motion for emotion
recognition has attracted the interest of researchers in the
field of affective computing.

Full-body motions are performed in three-dimensional
(3D) space; thus, 3D skeleton data are considered to be the
most intuitive and effective method for representing body
movements [5]. In addition, 3D skeleton data include rich
spatial and temporal information about body movements
[6], which allows us to explore the complex mapping rela-
tionship between emotions and full-body motions. With the
development of inexpensive and portable depth sensors and
real-time pose estimation algorithms [7], [8], we can easily
and accurately acquire the 3D coordinates and rotation an-
gles of each joint during full-body motion [9], which further
promotes the research of emotion recognition based on 3D
full-body skeleton data.

Previous research has shown that body expressions need
to be analyzed over a certain length of time interval, and
the full-body skeleton data on different time scales often
contain different information. For example, the researchers
of [10] found that long-term and macroscopic full-body
motions need to be processed over long time intervals,
whereas the subtle movements of some joints (e.g., hand
tremors or trembling) can be identified over shorter time
intervals. In [11], different time scales (ranging from 0.5 s to
5 s) were used to extract different levels of features from
body skeleton sequences. The authors of [12] confirmed
that multiscale analysis of full-body motions on different
time scales is essential for emotion recognition. However,
in previous studies, the different scales of body movement
have been chosen randomly or empirically, and there is no
gold standard for scale selection. This may lead to data on
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different time scales containing redundant or less affective
information, thus reducing the identification performance.
Furthermore, previous works mainly focused on analyzing
spatial or temporal features independently [13], [14], and
mostly used basic fusion techniques for spatio-temporal
fusion, such as concatenation or summation operation [15].
However, these fusion methods mix information from dif-
ferent domains and limit the feature extraction capability.

To address the above problems, we propose a multiscale
spatio-temporal network for automatic emotion recognition
based on full-body motions, as shown in Fig. 1. Considering
the lack of an effective and emotion-oriented scale selection
method in existing multiscale modeling of affective body
expression, this paper proposes an energy-based scale se-
lection approach to guide our network to perform coarse-
grained and fine-grained modeling simultaneously. Then,
we construct a multiscale spatio-temporal network with a
hierarchical two-branch architecture, which is a more effi-
cient framework for spatio-temporal feature extraction and
fusion. Specifically, to extract more discriminative spatio-
temporal features, in the encoding of the spatio-temporal
descriptors, inspired by the work of [13], [16], we construct
the posture covariance matrix and the 3D posture image
to encode full-body skeleton sequences in the spatial and
temporal domains. Subsequently, we construct the decoding
module of the multiscale spatio-temporal network based on
the architecture of Riemannian network [17] and convolu-
tional neural network (CNN) [18]. We redesign the structure
of the two networks, including changing the layer arrange-
ment and constructing the two-branch network structure,
which can jointly process posture covariance matrices and
3D posture images with different time scales, and then
hierarchically combine them in a coarse-to-fine manner.
Finally, to jointly optimize the proposed spatial and tem-
poral networks while alleviating overfitting during network
fusion, we introduce an iteration-based fusion algorithm,
namely spatio-temporal iterative (ST-ITE) fusion algorithm,
which effectively reduces the complexity of the model while
improving its generalizability and convergence.

The results of extensive experiments performed on five
publicly datasets demonstrate the effectiveness and gener-
alizability of the proposed method. Furthermore, our ap-
proach outperforms the existing state-of-the-art methods.
The contributions of this paper can be summarized as
follows:

• It designs an innovative energy-based scale selection
algorithm to guide our network to learn not only
macroscopic body expressions at long time scales,
but also subtle posture changes at short time scales,
thereby improving the learning ability of the net-
work.

• It constructs a multiscale spatio-temporal network
to decode the complex mapping between perceived
emotions and full-body motions. Posture covariance
matrices embedded with spatial correlation informa-
tion and 3D posture images embedded with tempo-
ral dynamic information are used as inputs to the
network.

• It proposes a spatio-temporal iterative (ST-ITE) fu-
sion algorithm to enable the network to perform joint

spatio-temporal optimization, reducing the complex-
ity of the model while improving the generalizability
and convergence of the model.

The rest of this paper is structured as follows. In Section
2, we provide a brief overview of related work. The datasets
used in this paper are introduced in Section 3. In Section
4, we describe the proposed multiscale spatio-temporal net-
work in detail. The experimental results of our approach are
reported in Section 5. Finally, conclusion and future work is
presented in Section 6.

2 RELATED WORK

In the following section, we first review the literature on
multiscale modeling of affective body expression. Then, we
discuss research on the spatial and temporal analysis of
body movement.

2.1 Multiscale Analysis of Affective Body Expression
Over the past decade, most research in affective body ex-
pression recognition have emphasized the importance of
multiscale analysis of body movements. For instance, giv-
en that fine-grained features are critical for distinguishing
actions, Kong et al. [19] developed multiscale temporal
embedding modules to extract features at various tem-
poral scales for skeleton-based action recognition. Recent
work [20] also demonstrated the importance of different
time scales in the analysis of full-body movements. The
authors introduced a multiscale structure into traditional
graph convolutional networks to extract multi-level posture
information, which significantly improved the performance
of the action recognition model. Wang et al. [21] proposed
an action recognition framework based on the 3D CNN
architecture that includes a module for modeling short-term
to long-term temporal dependencies and can efficiently fuse
multiscale features for action recognition. The work of [22]
have demonstrated that the multiscale analysis can help
models acquire more informative features in recognition
tasks based on body movements.

However, in these studies, the multiscale data were
selected randomly or empirically, which may generate re-
dundant features and thus reduce recognition performance.
Therefore, the question of how to establish an effective
scale selection algorithm for multiscale modeling of af-
fective full-body expression has attracted the interest of
many researchers. The energy generated during postural
movements is highly sensitive to different emotions [3],
[23], which provides a new idea for multiscale analysis
of affective full-body expressions. Some researchers believe
that kinetic energy is a key indicator of full-body motions.
For example, Glowinski et al. [24] regarded the total velocity
of each joint in 3D space as kinetic energy and used a
kinetic energy model to analyze affective body movements.
Li et al. [25] suggested that a velocity model of 3D skeleton
sequences calculated by coordinate differences can be used
to explore the mapping relationships between emotions
and postures. However, the energy generated by human
postures can be expressed as both kinetic and potential
energy. Gunes et al. [26] defined the first posture frame as a
neutral frame and used the Euclidean distance between the
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Fig. 1. The framework of the proposed method. For the spatial analysis, (a) the coarse-grained and fine-grained posture covariance matrices
are constructed separately to encode global sequence and 1/4 local sequence containing considerable emotional information; (b) a multiscale
hierarchical spatial network based on the Riemannian network architecture is then proposed to jointly process input covariance matrices from
coarse to fine. For the temporal analysis, (c) a 2s sliding window with 1.5s overlap is first utilized to divide the skeleton sequences into segments,
in each segment, the whole sequence and the selected 1/4 (0.5s) sequence are encoded in coarse-grained and fine-grained 3D posture images,
respectively; (d) a multiscale hierarchical temporal network based on the CNN architecture is then proposed to jointly process input posture images
from coarse to fine. Finally, (e) the spatial and temporal networks are jointly optimized in the FC layer by the proposed ST-ITE fusion algorithm and
then fed into the softmax layer for emotion recognition.

neutral frame and the instantaneous posture as the potential
energy feature to identify different emotions.

2.2 Spatial and Temporal Analysis of Affective Body
Expression
For the spatial analysis of full-body skeleton sequences,
existing methods often use posture covariance matrices to
encode spatial correlations between skeleton joints, and
exploit the geometric properties of the Riemannian manifold
to extract features from the posture covariance matrices. For
example, Daoudi et al. [13] represented 3D skeleton data
with posture covariance matrices and exploited the Rie-
mannian centre of mass and the log-Euclidean Riemannian
metric to classify five emotions. Kacem et al. [27] proposed a
geometric measure to process the posture covariance matrix
for emotion recognition from full-body skeleton sequences.
However, with significant advances in the study of opti-
mization strategies and activation functions for Riemannian
networks [28]–[30], an increasing number of researchers
researchers have focused on the potential of Riemannian
networks in processing posture covariance matrices. Huang
et al. [17] used the Riemannian network to extract spatial
information from the posture covariance matrix, significant-
ly improving the performance of skeleton-based recognition
tasks. Wang et al. [31] constructed a manifold-to-manifold
Riemannian network, which can learn more discriminative
low-dimensional features from the input posture covariance
matrix.

For temporal analysis, most studies in the last decade
have emphasized the effectiveness of encoding full-body
skeleton sequences using image-based representations,
while CNN have been proven to learn long-term tempo-
ral dependencies from the posture images [32], [33]. For
instance, Ke et al. [34] transformed three channels of the
skeleton sequence into the cylindrical coordinates to three
clip images and utilized CNN to extract long-term temporal

information from generated image representations. In their
subsequent research [35], the authors further improved the
original network into a hierarchical structure and proposed
a multitask convolutional neural network (MTCNN) to pro-
cess the generated clip images in parallel for skeleton-based
action recognition. Laraba et al. [36] mapped the 3D coor-
dinates of the joints in the pose skeleton sequence to red,
green, and blue values in the RGB domain, resulting in an
image-based representation, and then exploited discrimina-
tive features from the obtained images using CNN. Recently,
image representations have been applied in emotion recog-
nition based on full-body motion. For example, in the work
of [16], the authors leveraged four graph coding formats
to represent full-body skeleton data, and constructed multi-
input CNN structures to process the four types of images.
The experimental results indicate that the multi-input CNN
shows great capability in learning emotion patterns from
image representations.

3 MATERIALS

The efficiency and generalizability of the proposed method
was verified on five public affective full-body expression
datasets, which are listed in Table 1. The five datasets were
collected using different devices and included participants
from diverse regions.

1) EGBM [37]: It was captured by the Kinect V2 sensor
at a frame rate of 30Hz. This database contains 560 body
motion samples of actors representing 7 emotions: happi-
ness (Ha), sadness (Sa), neutral (Ne), anger (An), disgust
(Di), fear (Fe), and surprise (Su). Each emotion is repre-
sented by 80 samples. The scenarios were performed by 16
professional Polish actors. Each segment contains the 3D
position and orientation data of 25 joints. It should be noted
that the actors’ body movements during recording were not
imposed or previously defined; thus, this database can be
treated as a quasi-natural database.
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2) KDAE [38]: It contains 3D body motions recorded at
a frame rate of 125 Hz by a Noitom Perception Neuron
(PN). This database contains 1402 full-body expressions rep-
resenting 7 emotions: happiness (Ha), sadness (Sa), neutral
(Ne), anger (An), disgust (Di), fear (Fe), and surprise (Su).
The scenarios were performed by 22 Chinese actors, and
each posture segment contains the position and rotation
data of 72 anatomical nodes. In this paper, we use Right
Hand and Left Hand (joints 19 and 47) instead of the hand
position and remove other hand-related joints. After the
above preprocessing steps, the total number of joints was
reduced from 72 to 24.

3) Emilya [39]: It was recorded by the Xsens MVN
system at a frame rate of 120 Hz. This database contains
8,206 emotional posture segments representing 8 emotions:
anxiety (Ax), pride (Pr), happiness (Ha), sadness (Sa), panic
fear (Fe), shame (Sh), anger (An), and neutral (Ne). The
scenarios were performed by 12 actors representing 8 daily
actions. Each posture segment contains the 3D position and
rotation data of 28 markers.

4) MPI [40]: It was recorded by the Xsens MVN motion
capture system at a sampling rate of 120 Hz. This database
contains 1,447 body motion samples of actors representing
11 emotions: anger (An), fear (Fe), happiness (Ha), pride
(Pr), sadness (Sa), surprise (Su), relief (Re), disgust (Di), neu-
tral (Ne), amusement (Am), and shame (Sh). The scenarios
were performed by 8 actors. Each posture segment contains
the 3D position and rotation data of 28 markers. During
the recording sessions, the actors were seated on a stool
and asked to express different emotions through only upper
body activities, so the 10 lower limb joints were excluded
from the dataset. It should be noted that this database is
highly imbalanced in terms of emotional expression, which
is a challenge for the proposed model.

5) DMCD [41]: It was recorded by the PhaseSpace Im-
pulse X2 MoCap system at a sampling rate of 120 Hz. This
database contains 108 emotional dance sequences represent-
ing 12 emotions: afraid (Af), anger (An), annoyed (Ao),
bored (Bo), excited (Ex), happiness(Ha), miserable (Mi),
pleased (Pl), relaxed (Re), sadness (Sa), satisfied (St), and
tired (Ti). The scenarios were performed by 6 dancers. Each
posture segment contains the 3D position and rotation data
of 38 markers. Similar to the preprocessing method in [12],
we selected 26 joints for analysis. The subjects in this dataset
performed complex dance movements to express different
emotions, so it is a highly complex dataset of affective body
expression.

TABLE 1

Description of the datasets used to evaluate the proposed method.

EGBM [37] KDAE [38] Emilya [39] MPI [40] DMCD [41]

Acquisition Device Kinect V2 Noitom PN Xsens MVN Xsens MVN X2 MoCap

Frame Rate 30 125 120 120 120

Markers 25 72 28 28 38

Segments 560 1402 8206 1447 108

Emotions 7 7 8 11 12

4 METHODOLOGY

4.1 Multiscale Analysis

4.1.1 Pseudo-Energy Model

Previous studies have found that the energy generated from
full-body movements is the most significant representation
of the emotional state [42], [43]. Therefore, in this study,
we assume that an energy model can quantify correlations
between the body motions in each frame and emotions,
thereby providing a basis for multiscale modeling of affec-
tive body expressions. The pseudo-energy model is defined
by referring to the concept of mechanical energy.

The mechanical energy of the ith joint in the f th frame
during full-body motions can be defined as follows:

Efi = Efk,i + Efp,i =
1

2
m
(
vfi

)2
+mghfi (1)

where Efk,i and Efp,i represent the kinetic energy and poten-
tial energy of the joint respectively. i ∈ [1, I] and f ∈ [1, F ],
where I is the total number of human joints and F is
the total number of frames in posture segment. vfi is the
velocity of the i-th joint in the f -th frame, which is obtained
by computing the finite difference between the position of
joint in frame f and f − 1, and assume zero velocity at
f = 0. hfi is the Euclidean distances between the i-th joint
in the f -th frame and its corresponding neutral posture. The
definition of a neutral posture is provided below. Fig. 2(a)
and (b) visualize the kinetic energy information v and the
potential energy information h in a posture representing
raising hands with happiness.

It is assumed that all joints in the human body have the
same mass m, and we ignore the gravitational acceleration
g. Thus, the mechanical energy of the i-th joint in the f -th
frame can be estimated as follows:

Efi =
1

2

(
P fi − P

f−1
i

∆f

)2

+
∣∣∣P fi − Pn,i∣∣∣ (2)

where P fi = [x, y, z] represents the position of the i-th joint
in the f -th frame, and ∆f is one frame. The Pn,i is the joint
position of the neutral posture, which provides an initial
position for full-body motions. By calculating the Euclidean
distance between the motion position on each frame and
the initial position (i.e., neutral pose), we can calculate the
pseudo-potential energy generated from full-body motion
in each frame. Similar to [44], in this study, the neutral
posture is defined as a relaxed standing posture in which
both arms rest on the side of the thighs and both legs are
straight. In particular, we firstly define five vectors, namely,
the vector corresponding to shoulder center and hip center
(i.e.
−→
l1 ), the vectors corresponding to shoulders and wrists

of both arms (i.e.
−→
l2 and

−→
l3 ), and the vectors corresponding

to hip and ankle joints of both legs (i.e.
−→
l4 and

−→
l5 ). Then,

we calculate the sum of the included angles between the
above five vectors and the normal of the horizontal plane
in each frame (i.e. αsum = (α1 + α2 + α3 + α4 + α5)), and
the 5-frame postures with the minimum αsum are averaged
to obtain a neutral posture, which is shown in Fig. 3(a). An
illustration of instant postures and their neutral postures is
given in Fig. 3(b).
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Fig. 2. The construction of the pseudo-energy model. (a) The kinetic energy information obtained by computing the finite difference between
frames. (b) The potential energy information obtained by calculating the Euclidean distance between an arbitrary posture and its corresponding
neutral posture. (c) The pseudo-energy model. (d) The emotional correlation weight.

(a) (b)

Fig. 3. Diagram of neutral posture. (a) Definition of neutral posture.
(b) Diagrams of arbitrary postures (blue lines) and their corresponding
neutral postures (cyan lines).

The obtained dynamic energy evolution of each joint
over time is defined as the pseudo-energy model, which
is illustrated in Fig. 2(c). Then we normalize the pseudo-
energy model using Logistic function [44] to obtain the
energy weight Wδ contained in the posture data of each
frame, which is defined as follows:

Wδ =
1

1 + e−ζ×Ef
(3)

Ef =
1

2

N∑
i=1

(
P fi − P

f−1
i

∆f

)2

+
N∑
i=1

∣∣∣P fi − Pn,i∣∣∣ (4)

where Ef is the pseudo energy of all joints in the f th frame.
Given the energy generated during full-body movements is
highly sensitive to the emotional state [3], [23], we hypothe-
size that the energy weight Wδ can represent the emotional
information contained in the data of each frame, i.e., the
Wδ is considered as the correlation weight between the
skeleton data of each frame and emotion. Fig. 2(d) shows
the correlation weights Wδ for a happy posture. As shown
in Fig. 2(d), the full-body postures with larger weights have
high motion activity and extension, such as swinging the
body limbs and trunk. These frame data tend to contain
more emotional information and distributed continuously
at local locations in the sequence.

4.1.2 Scale Selection Algorithm

In this section, we design an adaptive scale selection algo-
rithm based on the pseudo-energy model, which is shown
in Algorithm 1. The algorithm can extract multiscale data
containing sufficient emotional information by starting from
the highest weight value in the pseudo-energy model and
extending different lengths forward and backward. Specif-
ically, we first utilize the pseudo-energy model to detect
the frame with the highest emotional correlation weight
in the posture sequence. Then, the scale window moves
forwards and backwards, using the detected frame as the
starting frame. If an inadequate extension length is detected
on one side during the process, the algorithm automatically
expands the window in the other direction until a sequence
of preset lengths is collected, which ensures that the posture
data in the window contains sufficient affective information.

In Algorithm 1, Pi represents the i-th full-body skeleton
sequence, with starting and ending frames of Si and Ei,
respectively. n is the index value of different temporal
scales, with n ∈ [1, N ]. In addition, max (·) returns the
maximum element of an array, with a value of wmax and an
index of fmax. round(·) represents rounding a value to its
nearest integer. As shown in Algorithm 1, the scale selection
algorithm outputs N full-body skeleton sequences with
different temporal scales. In this paper, the number of scales
N is set to 2. Subsequently, the scale selection algorithm
is introduced into the proposed spatio-temporal network
to guide our network to perform coarse-grained and fine-
grained modeling simultaneously. In the multiscale spatio-
temporal encoding, the scale size Ln for coarse-grained data
is chosen as the length of the observation window, while the
scale size for fine-grained data is chosen as 1/4 of the length
of the coarse-grained data. The specific encoding process for
the multiscale spatial and temporal features can be found in
Section 4.2.1 and 4.3.1.

4.2 Multiscale Spatial Feature Extraction

4.2.1 Posture covariance matrix Construction

Previous studies have shown that the posture covariance
matrix can capture spatial geometric correlations between
joints and has been applied as a robust and effective repre-
sentation of full-body motion [13]. Therefore, in this section,
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Algorithm 1 Scale Selection Algorithm
Input: sequence of full-body motions: Pi = P [Si, Ei]

start frame of sequence: Si
end frame of sequence: Ei
number of scales: N
size of scales: L1, .., Ln, .., LN

Output: start frame of scales: S1, .., Sn, .., SN
end frame of scales:E1, .., En, .., EN

1: initialization: n = 1

2: Wδ = 1

1+e−ζ×Ef (Pi)

3: [wmax, fmax] = max (Wδ)

4: while n ≤ N do
5: Sn = fmax − round

(
1
2 × Ln

)
6: En = Sn + Ln − 1

7: if Sn < Si then
8: Sn = Si
9: En = Sn + Ln − 1

10: end if
11: if En > Ei then
12: Sn = Sn − En + Ei
13: En = Ei
14: end if
15: n = n+ 1

16: end while

we introduce the posture covariance matrix to encode 3D
full-body skeleton sequences.

Let x ∈ Rd be d-dimensional feature vectors that contain
the 3D position information of all body joints during body
movements. A full-body skeleton sequence can be defined
as X = [x1, . . . ,xf ] ∈ Rd×f , where xf represents the
position of the body joints in the f -th frame. Then, the
posture covariance matrix of the posture sequence X is
defined as:

C =
1

f − 1

f∑
j=1

(xj − µ) (xj − µ)
T (5)

where µ is the mean of xf .
Given the importance of multiscale spatial analysis in

emotion recognition based on full-body motion, we extract
1/4 of each global motion sequence as a local sequence. The
local sequence is determined based on the proposed scale
selection algorithm and it contains considerable emotional
information. We then encode the global and local sequences
of full-body motion with covariance descriptors. The two
posture covariance matrices with different temporal scales
are used as coarse-grained and fine-grained inputs in the
subsequent multiscale spatial network. This procedure is
illustrated in Fig. 1(a).

4.2.2 Multiscale Spatial Network

A non-singular posture covariance matrix belongs to the set
of symmetric positive definite (SPD) matrices, which form a
connected Riemannian manifold Sym+

d [45]. When the tra-
ditional neural networks based on Euclidean computations
are used to process the posture covariance matrix, the non-

euclidean input matrix must be vectorized during the map-
ping process of the network, resulting in the disappearance
of spatial correlation between joints encoded in the matrix
structure [46]. As an alternative, the Riemannian networks
can capture more separable spatial features from the input
SPD matrices by learning the manifold-to-manifold embed-
ding mapping of the original matrix structure [17], [31].
Therefore, we propose a multiscale spatial network based
on the Riemannian network architecture to learn the spatial
affective representations encoded in the posture covariance
matrices with different scales.

The proposed multiscale spatial network has two key
characteristics. First, the network can directly process the
posture covariance matrices without transforming the SPD
matrices into vectors during the mapping process, which
ensures that the spatial information encoded in the posture
covariance matrices is not lost. Second, the network consists
of two parallel shallow networks that jointly extract the
spatial information embedded in the different scale posture
covariance matrices. Specifically, one branch network learns
the long-term macroscopic spatial patterns (coarse-grained
modeling), while the other branch learns the short-term
local spatial patterns (fine-grained modeling).

As shown in Fig. 4, the multiscale spatial network
is composed of multiple parallel eigenvalue rectification
(ReEig) layers, bilinear mapping (BiMap) layers, and eigen-
value logarithm (LogEig) layers. At the network input, C0

and C′0 represent coarse-grained and fine-grained posture
covariance matrices, respectively. The ReEig layer rectifies
the SPD matrix by using a non-linear function. To ensure
that the input posture covariance matrix and the matrix
mapped through the BiMap layer are still in Riemannian
manifolds, we set a ReEig layer in the first layer of the
network and after each BiMap layer. The BiMap layer
transforms the input SPD matrix into a more discriminative
matrix using the bilinear mapping transformation matrix.
During this process, the input matrix does not need to be
vectorized, thus preserving the spatial geometric informa-
tion contained in the original SPD matrix. The LogEig layer
endows elements in Riemannian manifolds with a Lie group
structure, thereby reducing the matrix to a flat space in
which traditional Euclidean computations can be applied
[47].

Let Cn−1 ∈ Sym+
dn−1

be the input SPD matrix of size
dn−1 × dn−1. The output Cr,n of the n-th ReEig layer, the
output Cb,n of the n-th BiMap layer, and the output Cl,n of
the LogEig layer can be defined as follows:

Cr,n = fr (Cn−1, ε) = Un−1 Max (εI,Λn−1)UT
n−1 (6)

Max (εI,Λn−1) = E(i, i) =

{
Λ(i, i), if Λ(i, i) > ε
ε, if Λ(i, i) ≤ ε (7)

Cb,n = fb (Cn−1,Wn) = WnCn−1W
T
n (8)

Cl,n = fl (Cn−1) = Un−1 log (Λn−1)UT
n−1 (9)

where Un−1 and Λn−1 denote the eigenvectors and eigen-
values of input matrix Cn−1, respectively, and I is the
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Posture covariance 
matrix with coarse-

grained

ReEig layer BiMap layer ReEig layer
LogEig layer

ReEig layer BiMap layer ReEig layer

LogEig layer

Output

Posture covariance 
matrix with fine-

grained

Fig. 4. Architecture of the proposed multiscale spatial network. C0 and C′0 represent coarse-grained and fine-grained posture covariance matrices,
respectively. Each branch network consists of ReEig layers, BiMap layers and LogEig layers. The ReEig layer replaces the small eigenvalues with
the preset threshold ε, thus ensuring the positive properties of mapped matrices. The BiMap layer transforms the input SPD matrix into a more
discriminative matrix using the transformation matrix W. The LogEig layer endows elements on Riemannian manifolds with a Lie group structure,
so that the matrix can be reduced to a flat space. Finally, the outputs of the two branches are vectorized and concatenated into a 1-D vector. In
each layer, we visually represent the matrix operations performed by the network using two light-colored matrices and one coloured matrix.

identity matrix. ε is a preset rectification threshold, which is
used to replace null or small eigenvalues in Λn−1 to obtain a
new matrix E(i, i). Wn ∈ Rdn×dn−1 is the bilinear mapping
transformation matrix. The dimension of Wn is adjusted to
reduce the complexity of the network, that is, dn < dn−1,
and log(·) is the matrix logarithm operation.

As shown in Fig. 1(b), because of the symmetry of the
SPD matrix, for the output of each branch network, we
extract only its lower triangle (including the diagonals) and
reconstruct the result into a 1-D vector. Then, we concatenate
the outputs of the two branches and regard it as the final
output of the multiscale spatial network.

4.3 Multiscale Temporal Feature Extraction

4.3.1 3D posture image Construction
The above spatial features are computed over the whole pos-
ture segment, thus emphasizing the geometric correlations
between joints during motion, while ignoring the temporal
dynamic evolution of each joint. Therefore, inspired by the
work of [16], [34], we propose a 3D posture image and
combine it with the sliding window to encode the temporal
dynamic evolution of affective full-body expressions in 3D
space (X-, Y- and Z-axes). In detail, we first extract the
3D position and rotation information of each joint from
the posture skeleton sequences. Then, we use the logistic
position format mentioned in [16] to map the X, Y, and Z
coordinate information to the R, G, and B components of an
RGB image, respectively. The logistic position format maps
the posture data to the interval -127 to +127 and is defined
as follows:

R =
⌈ 255

1 + e−L×P

⌉
(10)

where R represents the value of the new joints after map-
ping, and L is an empirically chosen constant that is taken
as 0.01 in this paper. P represents the relative position
and rotation information obtained after body-centred nor-
malization. Specifically, the spinebase (joint 0 in the EGBM

dataset; the joint in the same position is used for the other
datasets) in the first frame is treated as the origin of the
local coordinate system, and the positions and rotations of
all joints are taken with respect to this new origin. This
operation is performed for each frame in each sequence of
full-body motions. The motion trajectory of the i-th joint in
the f -th frame after body-centred normalization is denoted
as follows:

P fi =


xfi − x1spinebase

yfi − y1spinebase

zfi − z1spinebase

 , f ∈ N (11)

where xfi , yfi , and zfi represent the primitive 3D position
and rotation parameters of the i-th joint in the f -th frame,
and x1spinebase, y

1
spinebase, and z1spinebase are the 3D param-

eters of the spinebase in the first frame. In this paper, we
do not employ the traditional preprocessing method, i.e.,
using the 3D information of the spinebase on each frame
for normalization, because this would cause the coordinate
origin of the postural movement to be always located on
the spinebase [9], resulting in the loss of displacement
information of the trunk.

Finally, the position and rotation images are concatenat-
ed to obtain the 3D posture image. The encoding process
is shown in Fig. 5. In the 3D posture image, all joints are
represented on the vertical axis, while consecutive frames
in the sequence of full-body motions are represented on the
horizontal axis. Fig. 6 shows examples of 3D posture images
for four emotions in the EGBM dataset.

As illustrated in Fig. 1(c), we apply a 2s sliding window
with 1.5s overlap to divide the original full-body skeleton
sequences into segments. In each segment of full-body mo-
tions, we utilize the proposed scale selection algorithm to
select a quarter of local sequence that contain considerable e-
motional information. Then, the whole posture segment and
the selected 1/4 posture sequence are encoded into separate
3D posture images, which are then processed jointly in the
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Fig. 5. The construction of the 3D posture image. (a) The process of
extracting the 3D position and rotation information for each joint in the
3D full-body skeleton sequence. (b) The 3D posture image.

multiscale temporal network.

4.3.2 Multiscale Temporal Network
The CNN has been shown to be effective in developing
temporal models of visual images [12]. Thus, the CNN is
suitable for processing the proposed 3D posture image. Fur-
thermore, compared with other neural networks, CNN has
lower computational and memory costs and provides better
performance on smaller datasets [16], which is suitable for
emotional posture datasets with generally smaller datasets.
Therefore, in this paper, we propose a multiscale temporal
network based on the CNN architecture to jointly process
3D posture images with different scales.

In detail, similar to the above spatial network, the tem-
poral network has a two-branch 2D-CNN architecture. One
branch in the network performs coarse-grained modeling,
while the other branch performs fine-grained modeling.
The 3D posture images with different temporal scales are
used as the inputs to the network. The proposed network is
illustrated in Fig. 1(d). Each branch network consists of four
convolution layers. The first convolution layer processes the
input 3D gesture image with 8 filters. The following three
layers have 16, 32 and 64 filters and all filter sizes are 2× 6.
Compared to common square filters (e.g., the 2×2 filter), the
2×6 rectangular filter allows our network to learn temporal
features of the full-body expressions in consecutive frames
(i.e., on the horizontal axis of the 3D posture image) rather
than between skeleton joints (i.e., on the vertical axis of the
3D posture image). Finally, the outputs of the two branch-
es are flattened and concatenated into a 1-D vector. This
vector is fused with the obtained spatial feature in a fully
connected (FC) layer for classification. For other settings of
the multiscale temporal network, please refer to Section 5.1.

4.4 Spatio-Temporal Fusion Optimization Algorithm
Considering only spatial or temporal information is insuffi-
cient due to the intricate mapping between emotions and
full-body motions. Therefore, in this section, the ST-ITE
fusion algorithm is proposed to jointly optimize the above

Happy Anger Sad Neutral

Fig. 6. The 3D posture images of four emotions on the EGBM dataset.

Algorithm 2 Spatio-Temporal Iterative (ST-ITE) Fusion Al-
gorithm
Input: input of spatial network: Xsc, Xsf

input of temporal network: Xtc, Xtf

maximum number of iterations: imax
learning rate: αs, αt, αf
training set label: Y

Output: paremeters of spatial network: ωsc, ωsf
paremeters of temporal network: ωtc, ωtf
paremeters of FC layer: ωf

1: initialization: iteration i = is = it = 1

2: while i ≤ imax do
3: if mod (i, 2) = 1 then
4: Xis+1

s = S(Xsc, Xsf , ω
is
sc, ω

is
sf )

5: f i = F
( [
Xis+1
s , Xit

t

]
, ωif

)
6: Loss = L

(
f i, Y

)
7: ωis+1

sc = ωissc − αs(∂Loss∂fi ·
∂fi

∂Xis+1
s
· ∂X

is+1
s

∂ωissc
)

8: ωis+1
sf = ωissf − αs(

∂Loss
∂fi ·

∂fi

∂Xis+1
s
· ∂X

is+1
s

∂ωissf
)

9: is = is + 1

10: end if
11: if mod (t, 2) = 0 then
12: Xit+1

t = T (Xtc, Xtf , ω
it
tc, ω

it
tf )

13: f i = F
( [
Xis
s , X

it+1
t

]
, ωif

)
14: Loss = L

(
f i, Y

)
15: ωit+1

tc = ωittc − αt(∂Loss∂fi ·
∂fi

∂X
it+1
t

· ∂X
it+1
t

∂ω
it
tc

)

16: ωit+1
tf = ωittf − αt(

∂Loss
∂fi ·

∂fi

∂X
it+1
t

· ∂X
it+1
t

∂ω
it
tf

)

17: it = it + 1

18: end if
19: ∇ωi+1

f = ∂Loss
∂fi ·

∂fi

∂ωif

20: ωi+1
f = ωif − αf∇ω

i+1
f

21: i = i+ 1

22: end while

spatial and temporal networks. The features output by the
spatial and temporal networks are fused by the FC layer
and fed into a softmax layer to obtain the final prediction,
as shown in Fig. 1(e). The optimization scheme is given
in Algorithm 2. Given that spatial and temporal networks
have a large number of parameters, and the emotional
body expression datasets are typically small, this may easily
lead to overfitting if both spatial and temporal networks
are optimized at the same time. To address this problem,
we apply an iterative algorithm to optimize the spatio-
temporal network. Specifically, in each iteration, we select
the network to be optimized by calculating the remainder
of the iteration value t divided by 2. Then, we update the
parameters of the selected network by using the gradient
descent and backpropagation algorithms, during which the
parameters of the other network are fixed. Finally, at the
end of each iteration, the weights and biases of the FC layer
are updated. With this fusion algorithm, the spatio-temporal
network learns only half of the parameters in each optimiza-
tion iteration, thereby reducing the complexity of the model
while improving its generalisability and convergence.
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In Algorithm 2, Xsc and Xsf represent the full-body
skeleton data fed into the coarse-grained and fine-grained
branches in the spatial network, respectively. ωsc and ωsf
are the weight parameters of the two branch networks. The
parameter definitions of the temporal network are similar.
In addition, αs, αt and αf represent the learning rates of the
spatial network, temporal network and FC layer, respective-
ly. is denotes the is-th parameter update in the spatial net-
work; similarly, it is the it-th optimization of the temporal
network. i represents the i-th iteration of the entire spatio-
temporal network. In the optimization process of the spatial
network, mod (i, 2) returns the remainder after dividing the
iteration number i by 2. The mapping operation of the Rie-
mannian network is represented by S(·). The fused spatio-
temporal feature is denoted by

[
Xis+1
s , Xit

t

]
, where Xis+1

s

is the spatial feature captured in the is-th optimization of the
spatial network, which is fused with the previously obtained
temporal feature Xit

t captured in the it-th optimization of
the temporal network. F

( [
Xis+1
s , Xit

t

]
, ωif

)
denotes the

fusion mapping of the spatio-temporal features in the FC
layer, and ωif denotes the weight parameters of the i-th iter-
ation in the FC layer. The temporal network is optimized in
a similar manner. The cross-entropy loss function L

(
f i, Y

)
is used during the network optimization, which has been
widely used for various classification tasks and is known for
its good convergence properties [48], [49]. This ensures that
our ST-ITE fusion algorithm exhibits excellent convergence
and stability.

5 RESULTS AND DISCUSSION

In this section, we evaluate the efficiency of the proposed
method on five public databases, which are described in
Section 3. First, we discuss the effect of the multiscale
analysis on emotion recognition based on full-body motion
(Section 5.2). Then, the contribution of the proposed ST-
ITE fusion algorithm is investigated (Section 5.3). Next, we
report the performance of the proposed emotion recognition
model (Section 5.4). Finally, we compare the results of our
method with those of state-of-the-art approaches (Section
5.5).

5.1 Implementation Details
In this paper, for the spatial network, each branch network
contains 3BiRe, which means that 3 blocks of BiMap/ReEig
are used. For example, the structure of a branch network is
X0 → fr → f

(1)
b → f

(1)
r → f

(2)
b → f

(2)
r → f

(3)
b → f

(3)
r →

fl, where fr, fb, fl denote the ReEig, BiMap, and LogEig
respectively. The rectification threshold ε in the ReEig layer
is set to 1e-8. The sizes of three transformation matrices
W in the BiMap layers are set to dn−1 × 50, 50 × 30,
and 30 × 10 respectively, where dn−1 is the dimension
of the input posture covariance matrix. For the temporal
network, we design a CNN with four convolutional layers.
The number of filters in each layer is 8, 16, 32, and 64,
respectively. All filter sizes are 2 × 6, and all strides during
the convolution are set to 1 with the “same” padding. The
rectified linear unit (ReLU) activation function is used. After
the convolution filters in layers 2 and 4, we introduce max-
pooling operations with a kernel size of 2×2 and a stride of

2. The features output by the spatial and temporal networks
are fused by a FC layer and fed into a softmax layer to obtain
the final prediction. The FC layer with a layer size of 128
hidden nodes is used, and the loss was estimated with the
cross-entropy loss function. The optimizer is Adam, with a
learning rate of 10−3. The batch size is set to 64, and the
number of epochs is set to 200. In addition, the early stop-
ping trick is adopted to prevent overfitting. The proposed
network is trained using Tensorflow on two NVIDIA 3090
GPUs. All the experiments are performed using a 10-fold
cross-validation scheme, and the classification performance
is evaluated using the average classification accuracy1.

5.2 Benefit of Multiscale Features
To validate the benefits of multiscale analysis in the pro-
posed model, we first compared the classification perfor-
mance when using single scale features (coarse-grained
or fine-grained features) and multiscale features. Table 2
presents the average classification accuracy of different scale
features on the five datasets. In addition, the paired sample
t-tests were used to evaluate significant differences between
the best result and other results. As shown in Table 2,
the multiscale features (i.e., Multiscale (SS-PEM)) achieved
higher accuracy, with a performance improvement of 1.69-
12.90% over the single-scale features (i.e., Coarse-grained
and Fine-grained features) on all datasets (Emilya: p < 0.01,
other datasets: p < 0.001). This result demonstrates that
the multiscale analysis is beneficial for emotion recognition
based on full-body motion.

As presented in Section 4.1, the scale selection algorithm
based on the pseudo-energy model was designed to en-
hance the learning ability of our network in a coarse-to-fine
manner. To verify the effectiveness of the proposed scale
selection algorithm, we compared the recognition perfor-
mance of different scale selection methods, and the results
are presented in Table 2. SS-BR in Table 2 represents the
empirical scale selection method proposed in the work of
[12], which uses the entire data and the last quarter of data in
each skeleton segment as the multiscale features. Moreover,
SS-KE and SS-PE represent scale selection methods based
on kinetic energy and potential energy, respectively. The
proposed scale selection algorithm based on the pseudo-
energy model is abbreviated as SS-PEM. As shown in Table
2, on all datasets, the SS-PEM achieved better results than
the other scale selection methods. The results imply that
the energy-based scale selection scheme is more suitable for
multiscale analysis of body expressions than other methods.

In Section 4.2.1 and 4.3.1, we chose the length of fine-
grained data to be 1/4 of the length of coarse-grained data,
i.e., 25%. To investigate the impact of the ratio between
coarse-grained and fine-grained data lengths on the results,
we computed the results for three different ratios: 10%, 50%,
and 75%. The results are shown in the last four rows of Table
2. With the exception of the EGBM dataset, the results for
the other four datasets show that the optimal classification
results for multiscale features are achieved when the length
of fine-grained data is 25% of the coarse-grained data. This
finding reveals that shorter fine-grained data may make

1. Interested readers can contact the authors for access to the code,
and we will be happy to provide the necessary resources.
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TABLE 2
The average accuracies (%) of different scale analysis methods on the five datasets. The best results are labeled in bold.

EGBM KDAE Emilya MPI DMCD

Coarse-grained 86.88 ± 2.71∗∗ 87.54 ± 1.60∗∗ 92.73 ± 1.49 ∗ 80.05 ± 2.09∗∗ 78.87 ± 3.97 ∗∗

Fine-grained 84.24 ± 2.21∗∗ 84.10 ± 1.10∗∗ 90.59 ± 0.85 ∗∗ 76.70 ± 2.26∗∗ 80.30 ± 4.99 ∗∗

SS-BR 89.10 ± 2.52∗∗ 81.64 ± 1.62∗∗ 91.16 ± 1.13 ∗∗ 81.61 ± 1.55∗∗ 82.94 ± 3.10 ∗

SS-KE 91.96 ± 1.62∗∗ 92.29 ± 0.99∗∗ 93.65 ± 0.73 85.26 ± 1.22∗∗ 83.31 ± 4.17 ∗

SS-PE 91.64 ± 2.72∗∗ 91.94 ± 0.88∗∗ 92.18 ± 1.07 ∗∗ 83.85 ± 1.74∗∗ 82.30 ± 3.12 ∗

Multiscale (75%) 92.14 ± 1.65∗∗ 91.32 ± 0.75∗∗ 90.75 ± 0.68∗∗ 85.04 ± 2.04 ∗∗ 72.88 ± 5.69 ∗∗

Multiscale (50%) 96.19 ± 1.93 91.55 ± 1.41∗∗ 91.15 ± 0.91∗∗ 83.48 ± 1.83 ∗∗ 81.94 ± 2.90 ∗∗

Multiscale (10%) 86.10 ± 3.21∗∗ 92.12 ± 1.57∗∗ 91.67 ± 1.87∗∗ 85.32 ± 1.47 ∗∗ 85.49 ± 6.07
Multiscale (SS-PEM, 25%) 95.55 ± 1.47 95.60 ± 0.62 94.42 ± 0.68 89.60 ± 1.64 86.15 ± 3.02

∗ There are significant differences between the best results and other results (∗ : p < 0.01, ∗∗ : p < 0.001).

multiscale features contain less information, thus reducing
the classification performance of the model. On the other
hand, when the length of the fine-grained data exceeds
25% of the coarse-grained data, the multiscale features
may contain redundant information, thereby reducing the
descriptiveness of multiscale features.

5.3 Effectiveness of Spatio-Temporal Fusion Optimiza-
tion Algorithm
In Section 4.4, we propose the ST-ITE fusion optimization
algorithm to jointly optimize the spatio-temporal network.
To confirm the effectiveness of our algorithm, we first
compared the classification performance of the fused fea-
tures with the performance when only spatial or temporal
features were used. Then, we compared the proposed ST-
ITE fusion algorithm with the conventional optimization
algorithm (ST-SIM) that simultaneously optimizes the spa-
tial and temporal networks in each iteration. These results
are shown in Table 3. On all five datasets, the accuracy
obtained by the fused features (e.g., ST-SIM and ST-ITE) was
significantly higher than the accuracies obtained when using
either spatial or temporal features, with a performance im-
provement of 4.37-18.54% (all: p < 0.01). This result shows
that the fused spatio-temporal feature is more discrimina-
tive for emotion recognition. Furthermore, compared with
ST-SIM, the proposed ST-ITE achieved better performance
with smaller standard deviation (Emilya: p < 0.05, other
datasets: p < 0.01), demonstrating that the ST-ITE fusion al-
gorithm effectively improved the performance of the model
and alleviated the impact of individual differences.

Fig. 7 illustrates the recognition accuracy of different
emotions on the five datasets using the features before fu-
sion, and the fused features obtained using ST-SIM and ST-
ITE. Compared with the spatial features, temporal features,
and the features obtained by ST-SIM, the spatio-temporal
features obtained by ST-ITE achieved better recognition
results for the majority of emotions on the five datasets.
For instance, the recognition accuracies of neutral and anger
on the EGBM dataset were increased by 8.28% and 7.05%,
respectively. The recognition accuracies of relief and happi-
ness on the MPI dataset were improved by 9.74% and 7.81%,
respectively. This finding demonstrates that the proposed
ST-ITE fusion algorithm significantly improves the perfor-
mance of the model in identifying different emotions. In

addition, the performance of the fused features obtained by
ST-ITE is relatively balanced for different emotions.

Fig. 8 presents the accuracy curves on the testing set
before and after feature fusion on the EGBM and KDAE
datasets. On the EGBM and KDAE datasets, the accuracies
of ST-ITE exceeded 94% after 65 and 50 epochs, and its
convergence performance was significantly better than ST-
SIM and the features before fusion. These results suggest
that our ST-ITE fusion algorithm improves the convergence
of the spatio-temporal network.

In addition, we further compared the proposed fusion
algorithm with three advanced spatio-temporal fusion algo-
rithms, and the results are shown in Table 3. Since few exist-
ing works introduce spatio-temporal joint learning in affec-
tive body expression recognition, we compare three action
recognition methods with advanced spatio-temporal fusion
algorithms [50]–[52], which are similar to the emotion recog-
nition task based on body movements. We obtained the
original code for these three methods and evaluated their
performance on all five affective body expression datasets.
As shown in Table 3, the proposed ST-ITE fusion algorithm
achieved optimal recognition results on four datasets, with
performance improvements of 0.23-5.75%. On the DMCD
dataset, our method only has a lower performance than
MS-G3D, which represents to date a very excellent spatio-
temporal fusion method in skeleton-based recognition tasks.
The results imply that the proposed spatio-temporal fusion
algorithm is more suitable for emotion recognition based
on full-body motion than other traditional spatio-temporal
learning methods.

5.4 Performance of the Emotion Recognition Model

Fig. 9 shows the results of the proposed method in the form
of a confusion matrix for the five datasets, where each row
in the confusion matrix represents a ground truth class and
each column represents a predicted class. As presented in
Fig. 9, on the EGBM, KDAE, and Emilya datasets, the pro-
posed method performed well in recognizing all emotions,
and the accuracies for each emotion exceeded 90%. It is
important to note that these three datasets were collected
by different devices, and the participants were from various
countries. In addition, the EGBM dataset is small, and the
affective body expressions included in this dataset were
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TABLE 3
The average accuracies (%) before and after feature fusion on the five datasets and the comparison with the existing spatio-temporal fusion

methods. The best results are labeled in bold.

EGBM KDAE Emilya MPI DMCD

Spatial feature 88.24 ± 2.04∗∗ 87.97 ± 0.90∗∗ 75.88 ± 0.69∗∗ 72.39 ± 1.38∗∗ 79.75 ± 2.54∗∗

Temporal feature 81.88 ± 3.78∗∗ 87.14 ± 1.27∗∗ 90.05 ± 1.40∗∗ 83.51 ± 1.26∗∗ 77.13 ± 1.91∗∗

ST-SIM 91.78 ± 1.94∗∗ 92.89 ± 1.56∗∗ 93.65 ± 0.73∗ 84.00 ± 1.60∗∗ 83.27 ± 3.85∗∗

ST-GCN [50] 93.19 ± 1.73∗ 91.90 ± 1.51∗∗ 92.73 ± 1.49∗∗ 83.85 ± 1.74∗∗ 84.25 ± 3.48∗∗

MS-G3D [51] 94.36 ± 1.31∗ 93.48 ± 0.72∗∗ 93.82 ± 0.70 89.37 ± 0.97 88.10 ± 1.96
ST-TR [52] 93.78 ± 2.06∗ 93.31 ± 0.64∗∗ 91.24 ± 0.86∗∗ 86.12 ± 1.42∗∗ 84.71 ± 2.44∗

ST-ITE 95.55 ± 1.47 95.60 ± 0.62 94.42 ± 0.68 89.60 ± 1.64 86.15 ± 3.02

∗ There are significant differences between the best results and other results (∗ : p < 0.05, ∗∗ : p < 0.01).
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Fig. 7. The recognition accuracies (%) of the spatial feature, temporal feature, ST-SIM, and ST-ITE for different emotions on the (a) EGBM dataset,
(b) KDAE dataset, (c) Emilya dataset, (d) MPI dataset, and (e) DMCD dataset.

freely performed by actors without any additional restric-
tions, which could result in different representations during
each repetition. These factors were all challenges for our
model. However, the proposed method still achieved excel-
lent results on the above three datasets, which demonstrates
the robustness and generalizability of our approach.

As presented in Fig. 9(d) and (e), the proposed method
had lower classification accuracies on the MPI and DMCD
datasets than on the other datasets. This result could be
because the MPI dataset is highly imbalanced among the
11 emotional classes, which causes the trained model to
be biased towards the majority class [53]. Furthermore, the
DMCD dataset is a highly complex dataset, which may
increase the difficulty of the model in extracting multiscale
spatio-temporal features. Nevertheless, our model achieved
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Fig. 8. The accuracy curves on the testing set before and after feature
fusion on the (a) EGBM dataset and (b) KDAE dataset.

a remarkable recognition rate of more than 83% for all
emotions on the MPI dataset. On the DMCD dataset, the
proposed method achieved a recognition performance of
over 85% for 11 emotions except “bored”. These results sug-
gest that the proposed multiscale spatio-temporal network
is robust to data with class imbalance and high complexity.

5.5 Comparison with State-of-the-Art Methods

In this section, we compared our results with state-of-the-
art methods on the five datasets. To allow a fair compar-
ison, we adopted the cross validation settings mentioned
in the corresponding literature for the different datasets.
For example, for the EGBM dataset, we employed a 10-
fold cross-validation and a leave-one-subject-out (LOSO)
protocol. The methods used in the comparison are described
in the following:

1) For the EGBM dataset, Sapinski et al. [54] extracted
a sequence of key frames from the full-body motions and
used a CNN, a recurrent neural network (RNN) and an
RNN with long short-term memory network (RNN-LSTM)
to perform affective body expression recognition. Zhang et
al. [55] proposed an attention-based stacked LSTM network
(AS-LSTM) for emotion recognition from body movements.

2) For the KDAE dataset, Avola et al. [56] proposed a
pipeline using multi-view representation learning (MVRL)
for affective action recognition. Ghaleb et al. [57] represent-
ed the posture sequence as a graph, which was fed into the
spatio-temporal graph convolutional networks (ST-GCNs)
for emotion recognition.

3) For the Emilya dataset, in [59], 114 hand-crafted
posture features were extracted, and the random forest (RF)
with 500 trees was used to process the obtained features for
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Fig. 9. The confusion matrix of emotion recognition on the (a) EGBM dataset, (b) KDAE dataset, (c) Emilya dataset, (d) MPI dataset, and (e) DMCD
dataset.

TABLE 4
The performance (%) of the proposed method and other methods on the five datasets. The best results are labeled in bold.

EGBM KDAE Emilya MPI DMCD

Methodology Protocol Accuracy Protocol Accuracy Protocol Accuracy Protocol Accuracy Protocol F1-score
CNN [54] LOSO 58.10 --- --- --- --- --- --- --- ---
RNN [54] LOSO 59.40 --- --- --- --- --- --- --- ---
RNN-LSTM [54] LOSO 69.00 --- --- --- --- --- --- --- ---
AS-LSTM [55] LOSO 74.10 --- --- --- --- --- --- --- ---
MVRL [56] --- --- 10-fold 64.10 --- --- --- --- --- ---
ST-GCNs [57] --- --- 10-fold 65.00 --- --- --- --- --- ---
GCN [58] --- --- --- --- --- --- 5-fold 56.03 --- ---
L-GrIN [58] --- --- --- --- --- --- 5-fold 58.59 --- ---
RF-Motion Features [59] --- --- --- --- 3-fold 75.00 --- --- --- ---
SVM-χ2 Kernel [60] --- --- --- --- 10-fold 82.20 10-fold 78.60 --- ---
Multiscale CNN [12] --- --- --- --- 10-fold 91.31 --- --- 10-fold 74.68

Our method LOSO 83.24 ± 2.03 --- --- 3-fold 93.01 ± 1.81 5-fold 88.12 ± 0.77 --- ---
10-fold 95.55 ± 1.47 10-fold 95.60 ± 0.62 10-fold 94.42 ± 0.68 10-fold 89.60 ± 1.64 10-fold 86.15 ± 3.02

emotion recognition. Crenn et al. [60] extracted the posture
spectral features and utilized the SVM with a χ2 kernel to
identify emotions. Beyan et al. [12] proposed a multiscale
CNN structure to accommodate 8-bit RGB images obtained
from full-body skeleton data for emotion recognition based
on body movements.

4) For the MPI dataset, Shirian et al. [58] proposed
a learnable graph inception network (L-GrIN) that jointly
learned emotional representations in the underlying graph
structure of the body skeleton data. In addition, the authors
used a standard spectral graph convolution network (GCN)
to conduct experiments.

5) For the DMCD dataset, the compared method is the
multiscale CNN in [12], which allows multiple posture
image formats to be used as input simultaneously.

In Table 4, we compared our approach with exist-
ing methods on the five datasets. Overall, our approach
achieved better performance than recent state-of-the-art ap-
proaches on all datasets. On the EGBM, KDAE, and MPI
datasets, the proposed multiscale spatio-temporal network

achieved the highest recognition accuracies, which were
significantly better than the classification accuracies of the
CNN, LSTM, GCN and optimized networks based on L-
STM and GCN architectures. This finding reveals that the
proposed method is superior to conventional deep learning
methods for emotion recognition from full-body motion.
On the Emilya dataset, the proposed method achieved the
best performance, with an average accuracy of 94.42% and
a standard deviation of 0.68%, significantly outperforming
the RF and SVM models based on hand-crafted posture
features. This result demonstrates that our model is more
suitable for emotion recognition from full-body motion than
conventional machine learning classifiers. Furthermore, the
average accuracy of the multiscale CNN [12] on the Emilya
and DMCD datasets was 91.31% and 74.68%, respectively,
which was 3.11% and 11.47% lower than that of the pro-
posed method. This finding further indicates the effective-
ness of incorporating the multiscale spatial network with
Riemannian network architectures into multiscale temporal
networks based on CNN architectures in this paper.
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TABLE 5
The average accuracies (%) of the proposed method (PM) and other

methods on eight single actions on the Emilya dataset, which included
simple walking (SW), walking with an object in hands (WH), moving

books on a table (MB), being seated (BS), sitting down (SD), knocking
(KD), lifting (Lf), and throwing (Th). The performance of the PM for

each emotion class during different actions are also given. The best
results are labeled in bold.

SW WH MB BS
[59], [61] 85.00 84.00 83.00 68.00
[12] 87.29 87.35 92.02 96.59

PM 96.69 96.31 99.35 97.56
PM-Anxiety 95.25 95.70 99.45 96.94
PM-Pride 96.94 94.98 98.91 96.30
PM-Happiness 91.20 88.05 99.62 97.24
PM-Sadness 99.65 99.65 100 99.04
PM-Panic Fear 96.75 97.61 98.99 96.65
PM-Shame 97.57 97.98 99.81 98.83
PM-Anger 89.97 92.01 96.85 97.04
PM-Neutral 96.33 95.29 99.81 94.79

SD KD Lf Th
[59], [61] 68.00 82.00 78.00 79.00
[12] 87.63 93.03 90.24 90.10

PM 85.52 97.05 97.61 93.29
PM-Anxiety 79.14 97.76 97.07 95.76
PM-Pride 84.62 95.50 98.15 89.79
PM-Happiness 82.61 97.57 98.91 92.56
PM-Sadness 94.21 98.61 98.02 95.07
PM-Panic Fear 95.50 96.11 98.79 95.09
PM-Shame 88.17 97.99 97.24 94.28
PM-Anger 74.07 91.52 97.17 95.83
PM-Neutral 85.81 98.13 94.82 83.50

Finally, we evaluated the performance of the proposed
method (PM) on each action class on the Emilya dataset
and compared our results with the results of state-of-the-
art methods presented in [12], [59] and [61]. The results are
shown in Table 5. Furthermore, Table 5 shows the recogni-
tion accuracies of the proposed method for each emotion
class during different actions. We followed the same cross
validation settings as in the above comparative literature.
As shown in Table 5, in the evaluation of individual action
classes, the PM outperforms the existing methods, with
performance improvements of 0.97-29.56% for 7 out of 8
actions. With the exception of the SD action, the recognition
accuracies of the PM exceed 93% for 7 actions, and the PM
achieves the highest classification results for the MB action,
with an accuracy of 99.35%. In addition, it can be observed
that sadness was recognized with the highest classification
accuracy for 5 out of 8 actions, while the lowest accuracy
was obtained for anger, which is similar to the results in
[12].

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a multiscale spatio-temporal net-
work for emotion recognition based on full-body motion.
First, we innovatively design an adaptive scale selection
algorithm based on the pseudo-energy model, which guides
our network to focus on long-term macroscopic body ex-
pression (coarse-grained modeling) and short-term subtle
emotional posture changes (fine-grained modeling). Then,
we construct a hierarchical network architecture based on
the Riemannian network and CNN, which can jointly ex-
tract the spatio-temporal affective representations encoded

in the posture covariance matrices and 3D posture images
with different time scales. Finally, a ST-ITE fusion algo-
rithm is proposed, which enables the network to perfor-
m effective spatio-temporal optimization while reducing
overfitting during network fusion. The experimental results
on five public datasets indicate that multiscale analysis of
full-body motion can provide more discriminative emo-
tion representations. The proposed ST-ITE fusion algorithm
improves the classification performance and significantly
enhances the generalizability and convergence of the model.
Furthermore, the proposed method achieves excellent re-
sults on limited data and data with class imbalances, and
outperforms state-of-the-art methods on all datasets. These
results demonstrate the superiority and robustness of the
proposed multiscale spatio-temporal network for emotion
recognition based on full-body motion.

However, there are several limitations of this research
that need to be addressed in future work. First, the pro-
posed energy-based scale selection algorithm may struggle
to capture the fine-grained features in high complexity
datasets (e.g. DMCD dataset). This limitation may arise
from the simplified nature of the pseudo-energy model.
For future work, we plan to incorporate more advanced
synthesis method of neutral posture [60] into the proposed
pseudo-energy model. Furthermore, we also plan to assign
weights to the different energy models in the pseudo-energy
model to better combine the complementarity of the kinetic
and potential energy. These methods will further improve
the ability of the scale selection method in capturing the
richness and subtlety of complex body expressions.

Second, the proposed multiscale spatio-temporal net-
work ignores the varying contributions of different skeletal
joints to emotion recognition, resulting in the inclusion of
redundant joints that may affect recognition performance.
To address this limitation, future work could introduce an
attention mechanism into the network, which enable the
network to focus on joints that contain abundant emotional
information while suppressing the influence of redundant
or less informative joints. In addition, we plan to introduce
data augmentation methods into the network to further
improve the robustness of the model.

In the future, we will also further explore the potential
application of the proposed emotion recognition model
based on full-body motion in the field of mental health.
Specifically, our research can analyse the emotional state of
multiple individuals simultaneously in a relatively short pe-
riod of time, which will provide new methods and insights
for large-scale early detection of mental disorders. This will
further advance the development of low-cost, non-invasive,
and intelligent systems for the diagnosis and treatment
of mental disorders. Furthermore, the proposed emotion
recognition model is valuable in HCI. Traditional facial
expression recognition has limitations when facial expres-
sions are hindered, such as wearing masks. In contrast, our
approach can capture a wider range of emotional informa-
tion by analyzing full-body movements, thus overcoming
the limitations of traditional facial expression recognition
and providing a more comprehensive and accurate emotion
recognition result. In addition, the proposed emotion recog-
nition method has great potential in various fields such as
education, virtual reality, gaming, and social robotics.
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