
Journal of Affective Disorders 323 (2023) 299–308

Available online 30 November 2022
0165-0327/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Research paper 

Depression recognition using a proposed speech chain model fusing speech 
production and perception features 

Minghao Du a,1, Shuang Liu a,*,1, Tao Wang a, Wenquan Zhang a, Yufeng Ke a, Long Chen a, 
Dong Ming a,b,** 

a Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China 
b Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, 
Tianjin, China   

A R T I C L E  I N F O   

Keywords: 
Depression 
Deep learning 
Audio 
Feature fusion 
Auxiliary diagnosis 

A B S T R A C T   

Background: Increasing depression patients puts great pressure on clinical diagnosis. Audio-based diagnosis is a 
helpful auxiliary tool for early mass screening. However, current methods consider only speech perception 
features, ignoring patients' vocal tract changes, which may partly result in the poor recognition. 
Methods: This work proposes a novel machine speech chain model for depression recognition (MSCDR) that can 
capture text-independent depressive speech representation from the speaker's mouth to the listener's ear to 
improve recognition performance. In the proposed MSCDR, linear predictive coding (LPC) and Mel-frequency 
cepstral coefficients (MFCC) features are extracted to describe the processes of speech generation and of 
speech perception, respectively. Then, a one-dimensional convolutional neural network and a long short-term 
memory network sequentially capture intra- and inter-segment dynamic depressive features for classification. 
Results: We tested the MSCDR on two public datasets with different languages and paradigms, namely, the 
Distress Analysis Interview Corpus-Wizard of Oz and the Multi-modal Open Dataset for Mental-disorder Analysis. 
The accuracy of the MSCDR on the two datasets was 0.77 and 0.86, and the average F1 score was 0.75 and 0.86, 
which were better than the other existing methods. This improvement reveals the complementarity of speech 
production and perception features in carrying depressive information. 
Limitations: The sample size was relatively small, which may limit the application in clinical translation to some 
extent. 
Conclusion: This experiment proves the good generalization ability and superiority of the proposed MSCDR and 
suggests that the vocal tract changes in patients with depression deserve attention for audio-based depression 
diagnosis.   

1. Introduction 

Depression is a common but serious psychological disorder charac
terized by persistent pessimism, cognitive decline, and social dysfunc
tion (Hammar et al., 2022). To prevent depression scientifically, timely 
diagnosis is necessary to ensure appropriate treatment (Costantini et al., 
2021). The World Health Organization estimates that 322 million people 
currently suffer from depression (Organization, 2017), which severely 
increases the burden of diagnosis. Therefore, automatic methods are 

needed to improve diagnostic capabilities. Although 
electroencephalogram-based (Saeedi et al., 2021), heart rate-based 
(Hartmann et al., 2019), and blood-based (Sealock et al., 2021) 
methods have shown good performance in depression diagnosis due to 
the objectivity of physiological signals, the high cost of the equipment 
and cumbersome collection processes make it difficult to popularize 
them. In contrast, audio-based depression diagnosis is more suitable for 
early mass screening. This method captures paralinguistic differences to 
diagnose depression, such as prosody and speech quality. Not focusing 
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on the conscious and subjective semantic information, paralinguistics is 
an unconscious human communication phenomenon, containing rich 
content of attitude, themes, and emotions (Madhavi et al., 2020). 
Associated with neuromotor systems and physiological states, para
linguistic information in speech is highly sensitive to the effects of 
neurodegenerative illnesses (Gómez-Rodellar et al., 2020), which could 
serve as the objective depression-related marker. In addition, audio 
collection only requires a microphone, and the process could be con
tactless, both of which increase accessibility. Importantly, subject pri
vacy could be protected due to the openness of audio. Therefore, audio- 
based depression diagnosis could become a complementary method to 
improve current diagnostic capabilities. 

Phonetic differences in patients with depression have been 
confirmed by previous research. Patients usually present the clinical 
phonetic representation of speaking less, in low volume, and with hes
itation (Sahu and Espy-Wilson, 2014). After further quantification, a 
significant difference in amplitude-frequency characteristics was found 
between depressed and non-depressed groups with respect to the glottis, 
fundamental frequency, jitter, and shimmer (Jia et al., 2019; Silva et al., 
2021; Simantiraki et al., 2017). For explaining this phenomenon, some 
studies hypothesized that the neuromuscular coordination of patients is 
impaired by cognitive decline, and they further speculated that the vocal 
tract is affected by depression (Espy-Wilson et al., 2019; Seneviratne 
et al., 2020). Based on this research, the feasibility of implementing 
phonetic features as diagnostic clues of depression can be considered as 
confirmed. The goal of audio-based depression diagnosis is to identify 
depression by pronunciation features, regardless of language, content, 
or habits of speech. To achieve this, recent effort has mainly involved 
two aspects: phonetic feature extraction and optimization modeling. 

For phonetic features, considering the perception differences in 
depressive speech, handcrafted descriptors, such as speed, prosodic 
features, and spectral features have been widely used. With respect to 
emotional perception, short time energy, intensity, loudness, and zero- 
crossing rate were extracted as handcrafted descriptors, and they 
showed robustness in the depression classification task (Long et al., 
2017). With respect to tonal perception, Lam-Cassettari and Kohlhoff 
(2020) and Patil and Wadhai (2021) analyzed the difference of pitch 
between depressed and non-depressed groups and demonstrated the 
feasibility of pitch serving as a classification marker. With respect to 
auditory perception, the second dimension of the Mel-frequency cepstral 
coefficients (MFCC-2) of depressed patients was significantly higher 
than that of non-depressed subjects, which reflected an energy differ
ence of frequencies around 2000–3000 Hz (Taguchi et al., 2018). Based 
on these differences, the MFCC, Mel-spectrogram, and spectrogram, 
which reflect time-frequency information, have been used in depression 
diagnosis and have shown positive performance (He et al., 2022; Rejaibi 
et al., 2022; Vázquez-Romero and Gallardo-Antolín, 2020; Yadav and 
Sharma, 2021). However, these features are extracted only from the 
speech perception process based on the sensory differences in how the 
depressive speech sounded rather than how it is produced. As speech 
difference maybe originate from changes in the vocal tract, extracting 
features only from the process of speech perception will lead to infor
mation loss according to the speech chain (Denes et al., 1993; Tjandra 
et al., 2020). Recently, a study regarding speaker identity recognition 
built a speech chain model that could capture phonetic identity features 
from the processes of speech production and speech perception 
(Chowdhury and Ross, 2020). This work used linear predictive coding 
(LPC) to model the vocal tract of the speaker and MFCC to describe the 
perceptual law of the human ear. The efficacy of the proposed model 
over existing methods was demonstrated, which may represent an 
advancement in depression diagnosis. Hence, we suppose that extracting 
phonetic features from both the processes of speech production and of 
speech perception can further improve depression recognition. 

Models for automatic depression diagnosis have broadly employed 
two key approaches: traditional machine learning and neural networks. 
Representatives of traditional machine learning such as support vector 

machine (Dai et al., 2021; Valstar et al., 2016), linear regression (Jiang 
et al., 2018; Pan et al., 2018), and decision tree (Liu et al., 2020; Pam
pouchidou et al., 2016) are often selected for classification, but they 
have some limitations. As required for the input dimension of these 
models, statistical functions (mean, median, variance) of the phonetic 
features extracted from the whole speech are often used as inputs, which 
ignores the dynamic changes of the speech that are strongly associated 
with depression (Wichers, 2014). In contrast, neural networks are not 
limited by input dimensions and can extract dynamic information in the 
time or frequency domain. Srimadhur and Lalitha (2020) proposed an 
end-to-end convolutional neural network (CNN) framework to identify 
depression based on processed audio and achieved better classification 
results than the traditional machine learning models. Muzammel et al. 
(2020) divided the whole speech into segments and extracted spectral 
features, then established a phoneme-level CNN architecture to capture 
vowel and consonant acoustic features. This method provided excellent 
results on speech segments, but the whole speech was not tested. Zhao 
et al. (2021) focused on emotionally salient regions and proposed an 
attention-based long short-term memory network (LSTM) network to 
obtain key depression information in time information for classification. 
These studies have shown that neural networks are sensitive to dynamic 
information. 

Another challenge of classification models is class imbalance, such as 
inconsistency in quantity and speech duration. Previous studies used 
random sampling (He and Cao, 2018; Zhao et al., 2021), resizing (Dong 
and Yang, 2021; Othmani et al., 2021), and cropping (Ma et al., 2016; 
Negi et al., 2018) of the whole speech to ensure non-bias of the models, 
but the depression-related information could have been lost. In other 
words, it is unreasonable to diagnose only by a few seconds in several 
minutes of speech, and the meaning of spectrograms would be changed 
after compression. Fortunately, (Rejaibi et al., 2022) proposed an 
ensemble system that divided speech into segments for detection with 
unit length and performed final classification by a hard voting classifier. 
However, depression is reflected not just in the classification proportion 
of segments, for example, non-depressed subjects also say negative 
things, and depressed subjects also show fewer expressions of positivity. 
Therefore, more complex relationships between segments need to be 
explored. 

In this work, we propose a novel machine speech chain model for 
depression recognition (MSCDR). It has three main steps. First, raw 
speech is preprocessed to segments and then 40-dimensional LPC and 
39-dimensional MFCC features are extracted to describe the processes of 
speech generation and of speech perception, respectively. Second, a one- 
dimensional convolutional neural network (1D-CNN) is proposed to 
extract intra-segment depressive features, which is composed of two 
networks processing in parallel with LPC and MFCC features as the in
puts. Finally, a feature-level fusion algorithm is used to conduct the 
fusion of temporal features, and an LSTM is proposed to capture inter- 
segment depressive correlation features for classification. We 
employed the proposed MSCDR on the English dataset Distress Analysis 
Interview Corpus-Wizard of Oz (DAIC-WOZ) and Chinese dataset Multi- 
modal Open Dataset for Mental-disorder Analysis (MODMA) and 
compared the classification results with existing methods to demon
strate the superiority and generalization of the MSCDR. 

The contributions of this work can be summarized as follows:  

• Based on the machine speech chain, LPC and MFCC features are 
extracted from the speaker's mouth to the listener's ear to represent 
the pronunciation representation complementarily.  

• A segmentation and fusion method is proposed to extract intra- and 
inter-segment features from variable-length speech without cropping 
and redundancy.  

• A framework is constructed to capture text-independent depressive 
features for recognition, which suggests that the vocal tract changes 
in patients also deserve attention for audio-based depression 
diagnosis. 
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• The rest of this paper is organized as follows. The theoretical foun
dations and the details of proposed MSCDR are introduced in Section 
2. Section 3 reports the experimental setup and recognition results, 
which are discussed in Section 4. Finally, the conclusion and future 
work directions are in Section 5. 

2. Materials and methods 

2.1. Speech production and perception features 

The speech chain concept was first introduced by Denes et al. (1993), 
and it explains the physics and biology involved during a closed-loop 
process of a message's production, propagation, and perception from 
the speaker to the listener. Based on this theory, Chowdhury and Ross 
(2020) took a step further and first developed a closed-loop speech chain 
model based on deep learning that integrated human speech perception 
and production behaviors for identity recognition. This work improved 

the performance compared to that of separate systems. We reproduced 
the visualization of the speech chain based on the descriptions in pre
vious studies (Denes et al., 1993; Tjandra et al., 2020) (Fig. 1). During 
the production process, the message is encoded to text at the linguistic 
level, and the vocal tract generates the sound from the articulation, thus 
imparting the spoken language its acoustic properties at the physiolog
ical level. During the perception process, the acoustic meatus extracts 
speech features essential at the physiological level, and the text is 
decoded to meaning at the linguistic level. It is worth noting that the 
information rate contained in the transmitted spoken message is 
significantly higher than the base information rate of the text message 
itself. Therefore, the phonetic difference of depressed patients could be 
reflected objectively in the process of speech production and generation 
rather than the separation process used in previous studies. We first 
implemented the speech chain model for depression diagnosis that in
tegrated human speech perception and production phonetic behaviors. 
Referring to the previous study for speaker identity recognition 

Fig. 1. The speech chain according to Denes et al. (1993); Tjandra et al. (2020).  

Fig. 2. Visualization of the overall process of the proposed MSCDR, including three parts: preprocessing, intra-segment features extraction and inter-segment features 
extraction for classification. The black dotted line represents the training stage. There is a balancing process for positive and negative sample numbers during the 
training stage of the 1D-CNN. In the dotted box are two single models for comparison. 
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(Chowdhury and Ross, 2020), we used LPC to model the speech pro
duction process and MFCC to model the speech perception process. The 
combination covers the closed-loop speech chain complementarily and 
extracts depression-related information effectively. 

2.1.1. Linear predictive coding 
According to the source-filter model of speech, the human voice is 

excited from the lung as energy source and processed through the vocal 
tract as filter (Guzman et al., 2020; Mittal and Sharma, 2021). The in
formation contained in the speech signal is formed by the modulation of 
the vocal tract as a time-varying filter, rather than the energy source. 
Linear predictive coding (LPC) is the digital filter parameter for simu
lating the vocal tract to reflect the characteristics of the speaker. Because 
human voice is a highly correlated sequence, a linear combination of p 
past speech samples could predict the next speech sample x̂(n) , as given 
by: 

x̂(n) =
∑p

k=1
akx(n − k).

ak are the vocal tract filter coefficients; x(k)(k = 1,2,3,…,p) is the k past 
speech sample. The real n speech sample is x(n), and the prediction error 
en could be given as: 

en = x(n) − x̂(x) = x(n) −
∑p

k=1
akx(n − k).

By minimizing the mean square error of en, the filter coefficients ak(k 

= 1,2,3,…,p) can be obtained as the p-order LPC, which provides an 
estimate of the human vocal tract filter coefficients. 

2.1.2. Mel-frequency Cepstral Coefficients 
As shown in Fig. 1, the auditory pathway separates sounds based on 

their frequency content and converts sound waves into neural signals for 
brain. Mel-frequency Cepstral Coefficients (MFCC) model the human 
peripheral auditory system and are widely used in speech recognition 
(Rejaibi et al., 2022). MFCC describes the energies of the cepstrum in a 
nonlinear scale, the Mel scale. This scale reflects the characteristics of 
the human ear, which is more sensitive to low-frequency sounds than to 
high-frequency sounds. The relationship between the Mel scale and 
frequency can be approximated by: 

Mel(f ) = 2595× lg
(

1+
f

700

)

.

MFCC is extracted as follows: 1) Calculate Fast Fourier Transform 
spectrum from the frequency, 2) Extract the filter bank output allocated 
on the Mel scale, and 3) Obtain the cepstrum coefficient through 
Discrete Cosine Transform (Guzman et al., 2020). 

2.2. The proposed MSCDR 

The overall process of the proposed MSCDR consists of three parts: 
preprocessing, intra-segment features extraction, and inter-segment 
features extraction for classification, as shown in Fig. 2. The raw 
speech of each subject is divided into segments sequentially and then 

Fig. 3. Partial preprocessing results of one subject with (a) raw speech, (b) speech without internal noise, (c) speech segments with 7 s, and (d) phonetic features.  
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LPC and MFCC features are extracted after preprocessing. A 1D-CNN is 
established to extract intra-segment high-level depressive features from 
the LPC and MFCC features. After that, all of the segment features of 
each subject are fused in the time domain, and the depressive correlation 
information between segments is extracted through the LSTM for clas
sification. To further verify the improvement of the machine speech 
chain, two single models are constructed: the generation model extracts 
phonetic features only from the speech generation process, and the 
perception model extracts only from the speech perception process. 

2.2.1. Preprocessing 
Raw speech contains internal noise captured during collection, such 

as the interviewer's voice and mute clips, which are unassociated with 
depression and therefore affect the recognition performance. We 
removed the noise part, then divided the whole speech into segments of 
7 s without overlap, and recorded their sequence, as shown in Fig. 3. As 
mentioned earlier, such segmentation is used to unify the speech with 
different lengths and it increases the number of samples for training. 
Semantic destruction during segmentation does not affect the text- 
independent classification model. 7 s as the segment length is based 
on the results of enumeration experiments and is consistent with 

previous research (Alghifari et al., 2019). After that, LPC and MFCC 
features are extracted using the same sliding window of length [0.025 ×
fs] with [0.01 × fs] stride (fs is the sampling frequency) and a Hamming 
window. The LPC feature comprises 20 filter coefficients and 20 first- 
order delta coefficients, and the MFCC feature comprises 13 Mel- 
cepstral coefficients, 13 first-order, and 13 second-order delta 
coefficients. 

2.2.2. Intra-segment features extraction 
After preprocessing, all of the segments of each subject are mixed to 

eliminate the influence of subject identity, and a 1D-CNN is established 
to extract high-level depression-related features from the segments. 
Since the axes of the LPC and MFCC represent different magnitudes and 
correspond to time and frequency dimensions with completely different 
meanings, the convolution of all frequencies by the 1D-CNN increases 
the model's sensitivity to the frequency domain (Vázquez-Romero and 
Gallardo-Antolín, 2020). Fig. 4(a) shows the structure of the 1D-CNN 
framework. The combination of 1D-CNN and 1D maximum pooling 
enables the model to capture short-term temporal dynamic information 
and frequency correlations effectively. The batch normalization and 
dropout layers improve training speed and prevent overfitting. Dense 

Fig. 4. Proposed deep learning architecture with (a) a 1D-CNN framework for intra-segment features and (b) an LSTM framework for inter-segment features and 
classification. The dense layer in the dotted line is used only during training to calculate the network weights. For LSTM, the input dimension of the MSCDR is 32 and 
the input dimension of the single models is 16. K stands for the kernel size and s stands for the stride. 
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layers further extract features and reduce the output dimension. To 
avoid class imbalance, the quantity of depressed and non-depressed 
segments in the training set is balanced at the ratio of 1:1 during the 
training stage. During the test stage, the 16-dimensional output of the 
penultimate dense layer for each segment is only reserved for the next 
session. 

2.2.3. Inter-segment features extraction for classification 
After intra-segment features extraction, 16-dimensional outputs that 

include depression-related information of the short segments are ob
tained. The MSCDR concatenates the outputs of each LPC and MFCC 
feature from each segment to the 32-dimensional segment feature for 
integrating the process of speech generation and perception. Then, all of 
the features from each subject are spliced from the segment level to the 
personal level at the original time domain order. For single models, all of 
the segment features are directly spliced to the personal layer without 
dimension concatenation. Finally, a one-layer LSTM is built to capture 
short- and long-term temporal correlation features between the seg
ments at the personal level. Two dense layers are included to reduce the 
dimensionality and conclude the classification, as shown in Fig. 4(b). 
The recurrent layers of the LTSM consume variable-length inputs and 
ultimately produce only the layer's output at the final sequential step, 
which effectively deals with the inconsistent length speech of different 
subjects. 

2.2.4. Performance metrics 
Classification performance is determined using the confusion matrix, 

accuracy, and F1 score, similar to previous studies (Valstar et al., 2016; 
Zhao et al., 2021). F1 score is the harmonic mean of precision and recall, 
and it is a helpful evaluation criterion for unbalanced classification 
problems. 

Accuracy =
TP + TN

TP + FP + TN + FN
,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F1 =
2 × Precision × Recall

Precision + Recall
.

TP/FP indicates true/false positives samples, and TN/FN indicates true/ 
false negatives samples. A larger F1 score implies better discrimination. 

3. Results 

The proposed MSCDR can identify depression by pronunciation 
representation, regardless of the language, content, or habits of speech. 
To verify the text-independence of this method, we tested it on two 
datasets with different paradigms and languages and compared the 

classification results with previous studies. 

3.1. Two public datasets 

DAIC-WOZ (Gratch et al., 2014) is supported by the AVEC2017 
challenge (Ringeval et al., 2017) and is useful to understand several 
typical mental disorders: anxiety, depression, and post-traumatic stress 
disorder, for example. It recorded clinical interview audio of 189 sub
jects and discriminated between depressed and non-depressed patients 
by professionals combined with PHQ-8 binary. The paradigm hosted by 
a human-controlled virtual interviewer called Ellie. Ellie has a fixed set 
of utterances, and it provides feedback based on subjects' responses in 
real time. English is the language for questions and answers. The average 
length of audio recordings is 15 min, with a sampling frequency of 16 
kHz. Consistent with the public split of DAIC-WOZ, the training set (30 
depression vs. 77 non-depression) and development set (12 depression 
vs. 23 non-depression) are used to train and test. 

MODMA (Cai et al., 2022), supported by Lanzhou University, China, 
is applicable for mental disorder analysis. It contains 52 subjects (23 
depressed outpatients, 29 non-depressed subjects, and 1 depression data 
defective). Depressed patients were recruited among inpatients and 
outpatients that met the major depression diagnostic criteria of the 

Fig. 5. Confusion matrixes of the proposed MSCDR were generated on the test sets of DAIC-WOZ and MODMA. ND stands for non-depression and D stands 
for depression. 

Table 1 
Comparison of the proposed MSCDR with existing methods. The second and 
third lines of MODMA are the reproduction results based on a RNN method 
(Rejaibi et al., 2022) and DepAudioNet (Ma et al., 2016), respectively. ND stands 
for non-depression, and D stands for depression.  

Dataset Method Feature Model F1 
score 
(D/ 
ND) 

F1 
score 
(AVG) 

DAIC- 
WOZ 

Valstar et al., 
2016 

F0, VUV, and 
MFCC 

SVM 0.41/ 
0.58 

0.50 

Ma et al., 
2016 

Mel- 
Spectrogram 

CNN- 
LSTM 

0.52/ 
0.70 

0.61 

Huang et al., 
2020 

MFCC FVTC-CNN 0.40/ 
0.84 

0.62 

Rejaibi et al., 
2022 

MFCC RNN 0.46/ 
0.85 

0.64 

Othmani 
et al., 2021 

MFCC, 
Spectrogram 

CNN 0.49/ 
0.82 

0.66 

Dumpala 
et al., 2021 

OpenSMILE LSTM 0.50/ 
0.82 

0.66 

MSCDR (ours) LPC-MFCC CNN- 
LSTM 

0.67/ 
0.83 

0.75 

MODMA Chen and Pan, 
2021 

eGeMAPS Decision 
Tree 

0.80/ 
−

– 

Rejaibi et al., 
2022 

MFCC RNN 0.66/ 
0.73 

0.70 

Ma et al., 
2016 

Mel- 
Spectrogram 

CNN- 
LSTM 

0.82/ 
0.75 

0.79 

MSCDR (ours) LPC-MFCC CNN- 
LSTM 

0.84/ 
0.87 

0.86  
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Diagnostic and Statistical Manual of Mental Disorders (DSM). Healthy 
controls were recruited by posters and were excluded for other diseases. 
Each subject is asked to complete 29 recording tasks in different 
speaking patterns: interview, words and passage reading, and picture 
description under three kinds of emotional valences: positive, neutral, 
and negative. The passage reading recordings were excluded due to poor 
induction, which is explained in the discussion part. The spoken lan
guage is Chinese, and the recording length ranges from seconds to mi
nutes. To avoid too short recordings, we combined several recordings 
from the same subject and randomly divided all into a training set (89 
depression vs. 117 non-depression) and a test set (21 depression vs. 28 
non-depression) in the 8:2 ratio. 

3.2. Recognition performance 

During the training stage of the MSCDR, PyTorch was used to 
implement the system with 0.01 as the learning rate, 16 as the batch 
size, cross-entropy as the loss function, and an early stop mechanism to 
prevent overfitting. Fig. 5 shows the confusion matrix generated on the 
test sets of DAIC-WOZ and MODMA. We calculated evaluation indicators 
and compared them with previous models (Table 1). The accuracy of the 
proposed MSCDR on DAIC-WOZ and MODMA was 0.77 and 0.86, 
respectively, and the average F1 score was 0.75 and 0.86, respectively, 
which was 0.09 and 0.07 higher than the existing methods. In particular, 
the F1 score for depression significantly improved by 0.17 on DAIC- 
WOZ, indicating that the MSCDR significantly enhanced the ability of 
capturing depression information. 

The baseline (Valstar et al., 2016) of DAIC-WOZ and the method in 
(Chen and Pan, 2021) on MODMA only used statistical functions (e.g., 
mean, median) on whole phonetic features, which were not sensitive to 
temporal changes. In contrast, the studies (Ma et al., 2016; Huang et al., 
2020; Rejaibi et al., 2022; Othmani et al., 2021) extracted time- 
frequency characteristics of speech (Mel-Spectrogram, MFCC) that 
contained dynamic information and obtained better results. However, 
the features used by these methods were only from the speech percep
tion process and did not take into account the changes in the patient's 
vocal tract. Compared to these, the proposed MSCDR extracts from both 
the processes of speech generation and of speech perception and further 
improves classification performance effectively. The improvement of F1 
score for depression reflects the effectiveness of the 1D-CNN and LSTM 
in extracting depression-related information. Considering that not the 
whole speech of depressed people is depressed and non-depressed 

Table 2 
Comparison of the proposed MSCDR with two single methods: the generation 
model is only from the speech generation process and the perception model is 
only from the speech perception process. ND stands for non-depression and D 
stands for depression.  

Dataset Model Accuracy F1 score 

D ND AVG 

DAIC-Woz Generation Model  0.771  0.500  0.852  0.676 
Perception Model  0.714  0.583  0.783  0.683 
MSCDR  0.771  0.667  0.826  0.746 

MODMA Generation Model  0.837  0.789  0.867  0.828 
Perception Model  0.816  0.790  0.836  0.814 
MSCDR  0.857  0.844  0.868  0.856  

Fig. 6. (a) PHQ-8 score distribution of DAIC-WOZ subjects. (b) PHQ-9 score distribution of MODMA subjects. (c) PHQ-8 score distribution of the misclassified 
subjects of DAIC-WOZ. (d) PHQ-9 score distribution of the misclassified subjects of MODMA. The vertical dashed lines indicate the threshold for depression and 
non-depression. 
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people may also have depressed segments, the 1D-CNN first extracts 
depression-related information at the segment level rather than the 
whole speech by virtue of its sensitivity to the frequency domain. Then, 
the LSTM network classifies by capturing inter-segment correlation. 
Compared with whole speech-based classification, this method provides 
a new idea for depression diagnosis. In addition, the excellent results for 
the English dataset DAIC-WOZ and Chinese dataset MODMA demon
strate the text-independence of the MSCDR, which meets the re
quirements of audio-based depression diagnosis, namely, to classify 
pronunciation features, regardless of the language, content, or speech 
habits. 

4. Discussion 

4.1. Comparison to single models 

To further verify the improvement of the machine speech chain, we 
compared the MSCDR with two single models under the same condi
tions, as shown in Fig. 2. The generation model extracted the depression- 
related features only from the speech generation process, and the 
perception model extracted them only from the speech perception pro
cess. The results in Table 2 indicate that there was a significant 
improvement from using the MSCDR compared to the single models. The 
proposed MSCDR extracts LPC from the generation process and MFCC 
from the perception process. As the LPC describes the vocal tract of the 
speaker and MFCC describes the perceptual law of the human ear, their 
combination represents the pronunciation representation complemen
tarily. This improvement also proves to some extent that the vocal tract 
of depressed patients has changed, which is consistent with the hy
pothesis in (Espy-Wilson et al., 2019; Seneviratne et al., 2020). There
fore, the change of the physiological structure of depressed patients also 
deserves attention for audio-based automatic diagnosis of depression, 
which will lead to an improvement compared with manual diagnosis. 

4.2. Misclassification analysis 

Although the classification results of the MSCDR on both datasets 
were excellent, the average F1 score on DAIC-WOZ was significantly 
lower than that on MODMA, with the obvious gap of 0.11. We analyzed 
three factors that potentially affected the performance on DAIC-WOZ. 
The first factor is the possible label errors in DAIC-WOZ. The labels of 
MODMA are scientifically co-labeled by multiple scales and physician 
diagnosis, including PHQ-9 (Kroenke and Spitzer, 2002), (Gerdner and 
Allgulander, 2009), and GAD-7 (Spitzer et al., 2006). However, DAIC- 
WOZ binarizes the labels of subjects using only the PHQ-8 scale 
(Kroenke et al., 2009), which is not rigorous in clinical diagnosis, with a 
great likelihood of mislabeling. The second factor is that depressive 
symptoms are not prominent in DAIC-WOZ. As shown in Fig. 6(a) and 
(b), the score distribution of DAIC-WOZ is concentrated in non- 
depressed or mild patients whereas that of MODMA is more scattered. 
Such concentrated distribution of DAIC-WOZ might affect the training of 
the model. In addition, Fig. 6(c) shows that the misclassification subjects 
in DAIC-WOZ are concentrated at the threshold for depression and non- 
depression. The same phenomenon also happens on the MODMA data
set, as seen in Fig. 6(d). Thus, the third factor is that the audio features of 
depression may be subject to aliasing, that is, some non-depressed 
subjects with high scale scores may also show depressive phonetic fea
tures, and some mild patients may have no depressive phonetic symp
toms. This phenomenon is also noteworthy and has not been mentioned 
before. 

4.3. Speech tasks selection 

Unlike DAIC-WOZ that has only interview tasks, MODMA consists of 
five speech tasks: interview, passage reading, words reading, picture 
description, and the Thematic Apperception Test (TAT), which have 

different inducing effects. Similar to (Taguchi et al., 2018), we per
formed statistical analysis on each dimension of the MFCC features be
tween depressed and non-depressed groups to analyze the inducing 
effect of the different tasks. First, we used the Kolmogorov–Smirnov test 
to verify that the samples conform to the normal distribution. Then, 
Levene's test was used to test the homogeneity of variance. If satisfied, 
the Student's t-test was used; otherwise, Welch's t-test was used. And we 
corrected our findings for the hypothesis testing with the use of a false 
discovery rate (FDR) calculation. Table 3 shows the 39-dimensional 
statistical analysis results of each task. As we can see, the number of 
features with a significant difference in the passage reading task was far 
less than that in other tasks, indicating the low induction effect of this 
task, which is consistent with the previous results (Long et al., 2017; 
Rejaibi et al., 2022). We believe that this was due to its fixed content and 
the inconsistent familiarity of the subjects and therefore excluded pas
sage reading recordings in MODMA from this study. 

4.4. Brief summary 

Our results demonstrate the potential association between para
linguistic representation and depression, and further suggest that speech 
could be used as a powerful tool for early detection of mental disorders. 
Currently, there are many physiological programs on psychiatric disor
ders to explore their cognitive and pathological mechanisms. For 
example, the studies of metabolism (Bocchio-Chiavetto et al., 2018), 

Table 3 
p values of the 39-dimensional MFCC features for five speech tasks in MODMA. p 
< 0.05 indicates significant difference.  

Feature Interview Passage 
reading 

Words 
reading 

Picture 
description 

TAT 

MFCC-0  0.01  0.02  0.07  0.01  0.01 
MFCC-1  0.01  0.08  0.04  0.00  0.00 
MFCC-2  0.84  0.59  0.79  0.92  0.79 
MFCC-3  0.84  0.90  0.53  0.34  0.49 
MFCC-4  0.85  0.98  0.85  0.58  0.94 
MFCC-5  0.28  0.97  0.44  0.24  0.00 
MFCC-6  0.77  0.62  0.48  0.75  0.68 
MFCC-7  0.00  0.09  0.00  0.00  0.45 
MFCC-8  0.22  0.61  0.41  0.25  0.14 
MFCC-9  0.04  0.04  0.07  0.01  0.01 
MFCC-10  0.70  0.62  0.48  0.73  0.92 
MFCC-11  0.39  0.27  0.02  0.19  0.52 
MFCC-12  0.14  0.58  0.59  0.04  0.21 
MFCC-13  0.35  0.63  0.43  0.85  0.02 
MFCC-14  0.49  0.49  0.87  0.66  0.19 
MFCC-15  0.12  0.37  0.70  0.20  0.32 
MFCC-16  0.12  0.37  0.70  0.20  0.32 
MFCC-17  0.81  0.88  0.60  0.31  0.35 
MFCC-18  0.83  0.71  0.43  0.46  0.36 
MFCC-19  0.54  0.13  0.87  0.86  0.46 
MFCC-20  0.72  0.70  0.61  0.79  0.36 
MFCC-21  0.49  0.10  0.86  0.05  0.56 
MFCC-22  0.52  0.35  0.42  0.84  0.65 
MFCC-23  1.00  0.90  0.66  0.68  0.86 
MFCC-24  0.12  0.53  0.02  0.05  0.77 
MFCC-25  0.83  0.76  0.03  0.47  0.19 
MFCC-26  0.45  0.62  0.39  0.85  0.02 
MFCC-27  0.44  0.51  0.85  0.60  0.20 
MFCC-28  0.12  0.42  0.91  0.21  0.34 
MFCC-29  0.17  0.05  0.53  0.10  0.62 
MFCC-30  0.81  0.94  0.60  0.42  0.51 
MFCC-31  0.90  0.61  0.54  0.31  0.28 
MFCC-32  0.66  0.11  0.91  0.85  0.44 
MFCC-33  0.52  0.60  0.53  0.87  0.28 
MFCC-34  0.59  0.07  0.89  0.03  0.78 
MFCC-35  0.41  0.33  0.27  0.76  0.51 
MFCC-36  1.00  0.98  0.69  0.73  0.94 
MFCC-37  0.03  0.41  0.03  0.05  0.83 
MFCC-38  0.63  0.66  0.04  0.38  0.12 
The number of 

p < 0.05  
5  2  7  6  6  
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genes (Li et al., 2021), electroencephalogram (Saeedi et al., 2021), 
magnetic resonance imaging (Squarcina et al., 2017) have made some 
important progress in exploring their physiological mechanism. We 
believe speech could be an important supplement to the understanding 
of mental disorders with its low acquisition cost and strong popularity. 
Furthermore, the audio-based diagnosis technology could be applied to 
smart devices such as mobile phones and bracelet to actively detect 
people's mental health, which can deal with potential mental health 
risks in society and has broad application prospects. 

5. Conclusion 

In this study, we proposed a MSCDR that extracts phonetic features 
from the speech perception and production processes complementarily 
for automatic depression recognition. The excellent classification results 
on two datasets with different paradigms and languages prove the good 
generalization ability and superiority of the proposed MSCDR. Due to 
the limitation of small sample size, we cannot apply MSCDR to the 
diagnosis of depression levels. Next, we will expand the sample size and 
make further verification before clinical translation. We believe this 
study suggests that the changes of the vocal tract in patients with 
depression deserve attention, and also provides theoretical basis and 
inspiration for the research of audio-based depression diagnosis. 
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