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Abstract—As depression becomes more commonplace in

society, the timely and effective detection of the signs of

depression for its prevention and early treatment becomes . o
more important. Gait analysis can provide a contactless
and low-cost method for depression diagnosis. In this
study, we propose a novel gait assessment framework to
implement non-intrusive, real-time and automatic depression
detection using Kinect, an inexpensive and portable depth
sensor. We focus on extracting a novel time-domain and
frequency-domain feature (TF-feature) and a spatial geometric
feature (SG-feature), and investigating the effectiveness of
fused features in detecting depression for the non-contact
gait data. A pseudo-velocity model is firstly built to analyze
the gait abnormalities of individuals with depression in the time domain. Subsequently, we perform the power spectral
density (PSD) analysis on the model to extract the TF-feature. Then, the covariance matrices and the symmetric Stein
divergence (S-divergence) are leveraged to obtain the SG-feature, which is fused with TF-feature to form new features for
classification. The experimental results on 95 subjects (43 scored-depressed and 52 non-depressed individuals) show that
the proposed method achieves a good classification accuracy of 93.75%, has superior performance compared to several
other methods, and significantly alleviates the impact of individual differences. These results indicate the efficacy and
robustness of the proposed framework for depression detection.

. TF-feature
L

SG-feature
e d(C,.Cpip)

depression

normal p

Index Terms— Gait, depression detection, Kinect sensor, pseudo-velocity model, time-frequency feature, covariance

matrices.

Manuscript received August 17, 2020; accepted September 3, 2020.
Date of publication September 7, 2020; date of current version January 6,
2021. This work was supported in part by the National Key Research
and Development Program of China under Grant 2019YFA0706200;
in part by the National Natural Science Foundation of China under
Grant 61632014, Grant 61627808, and Grant 61210010; in part by the
National Basic Research Program of China (973 Program), under Grant
2014CB744600; in part by the Program of Beijing Municipal Science and
Technology Commission under Grant Z171100000117005; and in part
by the Fundamental Research Funds for the Central Universities under
Grant lzujbky-2020-kb25. The associate editor coordinating the review
of this article and approving it for publication was Prof. Rosario Morello.
(Corresponding authors: Hong Peng; Xiping Hu; Bin Hu.)

Tao Wang, Cancheng Li, Chunyun Wu, Chengjian Zhao, Jiegiong
Sun, and Hong Peng are with the Gansu Provincial Key Labora-
tory of Wearable Computing, School of Information Science and
Engineering, Lanzhou University, Lanzhou 730000, China (e-mail:
wangtao2018 @lzu.edu.cn; licch17 @lzu.edu.cn; wuchy18@Izu.edu.cn;
zhaochj18@Izu.edu.cn; sunjg18@Izu.edu.cn; pengh@Izu.edu.cn).

Xiping Hu is with the Gansu Provincial Key Laboratory of Wearable
Computing, School of Information Science and Engineering, Lanzhou
University, Lanzhou 730000, China, and also with the Shenzhen
Institutes of Advanced Technology, Chinese Academy of Sciences,
Shengzhen 518055, China (e-mail: huxp @lzu.edu.cn).

Bin Hu is with the Gansu Provincial Key Laboratory of Wearable Com-
puting, School of Information Science and Engineering, Lanzhou Univer-
sity, Lanzhou 730000, China, also with the CAS Center for Excellence in
Brain Science and Institutes for Biological Sciences, Shanghai Institutes
for Biological Sciences, Chines Academy of Sciences, Shanghai 200031,
China, and also with the Beijing Institute for Brain Disorders, Capital
Medical University, Beijing 100069, China (e-mail: bh@Izu.edu.cn).

Digital Object Identifier 10.1109/JSEN.2020.3022374

1558-1748 © 2020 |IEEE. Personal use is permitted, but

I. INTRODUCTION

EPRESSION is a common disease in psychiatry. Accord-

ing to the World Health Organization, clinical depres-
sion has affected approximately 264 million people globally
[1]. However, the existing depression treatment studies have
mostly focused on rehabilitation and have neglected early
detection, which can effectively prevent the occurrence of
more serious negative consequences [2]. Therefore, in recent
years, interest in automatic depression assessment has grown
rapidly.

The human gait is a natural behavior composed of several
repetitive parts, known as gait cycles. It provides more useful
information than only mobility and has been applied in the
analysis of depression. Compared with other methods in cur-
rent depression detection, such as those based on audio, text,
magnetic resonance imaging (MRI) and electroencephalogram
(EEG) [3]-[7], methods based on gait have the following
advantages. First, gait does not require high-resolution capture
or special equipment [8]. Second, gait movement can be
captured from a distance, enabling a contactless method; only
the simple cooperation of the subject is needed.

Because of these advantages, researchers have proposed
some sensor-based gait analysis methods to study depression.
In [9], the authors used a video camera and special devices
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placed on shoes to collect the gait data of subjects and found
a linear correlation between walking velocity and depression
severity. Utilizing a motion capture system with video cameras
and markers attached to the participants’ bodies, some gait
abnormalities of depressed individuals were found in [10],
such as reduced walking velocity, increased body sway and
more slumped posture, compared to healthy individuals. With
a digital camera, the study reported in [11] also verified that
slouching postures were a prominent feature of patients with
depression during gait movements.

With the advent of low-cost and non-intrusive motion cap-
tion sensors, such as Microsoft Kinect, we can trace the major
joints (Kinect V2 provides 25 points) of the human body
dynamics accurately in a 3D (x-, y- and z-axes) manner with-
out the assistance of additional equipment or the requirement
of a specifically designed environment [12]. Compared with
the traditional gait acquisition equipment, such as human per-
ceivers (e.g., inertial measurement unit and smart markers) and
RGB cameras, the gait data collected by Kinect are recorded
in a non-contact manner, which can avoid the potential effects
of markers and wearable devices. In addition, the depth maps
collected by Kinect are insensitive to illumination changes and
contain more 3D information [13]. Hence, they have proven to
be reliable in estimating body skeletal information [14]. As an
ideal candidate for a low-cost system, the Kinect device can
be effectively employed for action recognition [15], affective
computing [16], gait analysis [17], and home rehabilitation
and monitoring [18].

The recently introduced Kinect-captured gait data have been
widely implemented in clinical applications, such as those
involving elderly people at home who have a high risk of
falling, individuals with multiple sclerosis and patients suffer-
ing from Parkinson’s disease [19]-[21]. Furthermore, Kinect
has been used in gait-based depression detection. Leveraging
the fast Fourier transform (FFT) to extract features from gait
data collected by Kinect, the authors of [22] trained regression
models to recognize the level of anxiety and depression.
In [23], the authors used Kinect to capture the gait trajectory
and proposed a new direction for detecting depression with
gait frequency features based on the Hilbert-Huang transform.
Reference [24] also used Kinect to collect gait skeletal data
and investigated the associations between gait abnormalities
and depression.

Although some studies have utilized 3D gait skeleton data
extracted by Kinect for depression detection, some issues
persist with the current data analysis. First, the existing method
for extracting the gait abnormalities of patients with depression
concentrates on a certain dimensional coordinate of a few
special joints and only focuses on the frames with extremely
abnormal gait. This approach renders the consecutive 25-joint
frame sequence collected by Kinect to be only partially
utilized, with abnormalities in several gait characteristics inef-
fectively expressed. Thus, a particular model to analyze gait
anomalies is urgently needed. Furthermore, the current feature
extraction methods are analyzed in the time domain and the
frequency domain separately. Features in both domains need to
be considered comprehensively to analyze the gait data from
patients with depression. Second, in the current gait research

based on Kinect for depression detection, each joint is studied
independently, ignoring the relationships between joints. These
relationships might enable extracting the irregular and com-
plex gait spatial information for skeleton-based recognition
tasks [25].

To address these issues, in this paper, a gait assess-
ment framework implementing non-intrusive, real-time and
automatic depression detection is proposed. The input of
our system is composed of 3D skeleton sequences pro-
vided by two Kinect V2 devices attached to the ceiling.
First, we conduct preprocessing to improve the data qual-
ity. Subsequently, time-domain and frequency-domain fea-
ture (TF-feature) and spatial geometric feature (SG-feature)
extractions are performed on the data. In the extraction of
TF-feature, we construct a pseudo-velocity model to analyze
the gait abnormalities of individuals with depression in the
time domain, then we perform frequency domain analysis
on this model to extract the TF-feature. In the extraction
of SG-feature, we encode the positional and angular infor-
mation of joints in a covariance-based descriptor to obtain
the correlations between joints and utilize the metric on the
symmetric positive definite (SPD) space to extract gait spatial
information. Finally, two types of features are fused and
fed into the prediction step for depression detection. The
experimental results demonstrate that our method outperforms
all other methods considered for comparison with an average
accuracy of 93.75%. The main contributions of this study
include the following:

« It innovatively builds a pseudo-velocity model to analyze
the gait abnormalities of patients with depression during
walking; the subsequently obtained TF-feature can well
support depression detection.

o It provides an enhanced gait spatial geometric feature
to capture complex and irregular gait patterns associated
with depression, leveraging the covariance matrix and the
symmetric Stein divergence on the SPD space.

o It provides a gait assessment framework based on 3D
skeleton data collected by Kinect, which will motivate the
development of more intelligent or simplified applications
based on depth sensors for use in automatic mental health
assessments.

The remainder of this paper is organized as follows.
In section II, we introduce the gait data acquisition and
describe the proposed gait assessment framework in detail.
The experimental results are reported in section III. Finally,
we conclude this paper in section IV.

Il. MATERIALS AND METHODS
This section mainly focuses on the construction of the
Kinect-based gait assessment framework for depression detec-
tion and introduces the gait data collection. The entire frame-
work is shown in Fig. 1.

A. Gait Data Collection

This study involved gait sequences of 95 individuals. The
participants were first-year students among 2018 graduate
students from various faculties of Lanzhou University, and
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Fig. 1. The framework of our proposed method: The 3D skeleton sequences collected by Kinect are first preprocessed including resampling, angle
transformation, normalization and denoising. Subsequently, the TF-feature and the SG-feature are extracted. In the extraction of the TF-feature,
the pseudo-velocity model is established by combining the velocity curve in the Cartesian coordinate system with the angular velocity curve in the
spherical coordinate system. Then, the power spectral density (PSD) is utilized to analyze the pseudo-velocity model for obtaining the TF-feature.
In the extraction of the SG-feature, we first map the raw data into a spherical coordinate system to obtain the enhanced angular information. Then,
we encode the skeleton positional and angular data by calculating the covariance matrix, after which we utilize the S-divergence to obtain the
SG-feature in the SPD space. The final predictions are obtained from a softmax layer, the input of which consists of the fused features output by the

fully connected (FC) layer.

their ages ranged from 22 to 28 years old. The study was
approved by the Local Research Ethics Committee, and written
informed consent was obtained from all participants before the
experiment began. All subjects were divided into two groups
based on the scores of two scales: the Patient Health Ques-
tionnaire (PHQ-9, Chinese version) [26] and Zung Self-rating
Depression Scale (SDS, Chinese version) [27].

The non-depressed group (PHQ: mean = 2.04, SD = 2.72;
SDS: mean = 36.85, SD = 7.21) consisted of 52 individuals
(M: 28, F: 24), whose scores were in the healthy range of
both the PHQ-9 and SDS. The scored-depressed group (PHQ:
mean = 13.04, SD = 4.31; SDS: mean = 62.73, SD = 7.34)
contained 43 (M: 23, F: 20) participants. The criteria for

recruiting the scored-depressed group were that the candidates
must be assessed as depression in both the PHQ-9 and SDS.
In addition, the score had to reach a moderate level in at
least one of them ( PHQ-9 score > 10 or SDS score > 60).
The school psychologists have confirmed the results. Basic
information about the subjects is provided in Table I.

During the data collection process, all participants were
required to walk in a manner that entailed two round-trip walks
on a 10-meter path. Our setting for gait data collection was
similar to that of [24]. Two Microsoft Kinect V2 sensors were
positioned facing each other (4 meters apart) and installed on
the ceiling, and their tilt angles were set to a fixed value,
i.e., —27° toward the path. The cameras recorded the skeleton
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TABLE |
BASIC INFORMATION OF THE SCORED-DEPRESSED AND
NON-DEPRESSED GROUPS

Scored-depressed Non-depressed

Cases(n) 43 52
Sex, M:F 23:20 28:24
PHQ-9 (means £ S.D) 13.04+4.31 2.0442.72
SDS (means £ S.D) 62.731+7.34 36.8547.21
K 4m 5
- —
[ <<
2.5m
I [ o o o e
A A A R A R=

10m

Fig. 2. The data collection scheme. Two Kinect V2 (4 meters apart)
are set up in the middle of the ceiling with a —27° tilt angle toward
the footpath, and the distance between the ceiling and the footpath
is 2.5 meters. All participants are required to perform two round-trip walks
on a 10-meter footpath.

joint coordinate streams at a frame rate of 30 Hz. To obtain the
participants’ stable and comfortable speed and posture, the gait
data were collected while the subjects walked in the middle of
the path. The distance between the ceiling and the ground was
2.5 meters, which served to diminish the participants’ attention
to the existence of the camera. To realize the simultaneous
data acquisition of two Kinect cameras, we developed a gait
acquisition system based on Kinect for Windows SDK 2.0
and using the C# programming language. The data collection
scheme is shown in Fig. 2.

B. Data Preprocessing

1) Resampling and Angle Transformation: The skeleton
streams used in the experiment are composed of 3D infor-
mation from 25 joints of the entire body; the indexes of the
joint points are shown in Fig. 3. To increase the measurement
precision and remove unnecessary joints, we calculated the
average value of the left wrist (joint 6) and the other three
joints (7, 21, 22) in the left-hand subset and averaged the
values of the left ankle (joint 14) and left foot (joint 15).
Similar processes were applied to the right arm and leg as
well, with the total number of joints decreasing from 25 to 17.

Two Kinect devices were attached to the ceiling to acquire
the gait data. When participants were walking, the skeletal
data from the front and back views were recorded simultane-
ously. Therefore, we segmented the data into back and front
information based on whether the participants were facing
the camera. Previous reports confirmed the effectiveness of
using the skeletons from the front view over using those
from the back view [24]; thus, we eliminated the segments
from the back view. To ensure that each segment covered
one to two gait cycles and was adapted to our subsequent
feature selection, we kept the fragments that contained at
least 65 frames (approximately 2.17 s). After resampling,
we obtained 274 gait sequences such that the non-depressed

0.Spinebase
1.SpineMid

2. Neck

3. Head
4.ShoulderLeft
5.ElbowLeft
6.WristLeft
7.HandLeft
8.ShoulderRight
9.ElbowRight
10.WristRight
11.HandRight
12.HipLeft
13.KneeLeft
14.AnkleLeft
15.FootLeft
16.HipRight
17.KneeRight
18.AnkleRight
19.FootRight
20.SpineShoulder
21.HandtipLeft
22.ThumbLeft
23.HandtipRight
24.ThumbRight

4

(9 ©

Right-foot subset

Left-foot subset

Fig. 3. The 25 markers on the human skeleton generated by Kinect V2.

group contained 136 segments, and the scored-depressed group
contained 138 segments.

The angle of 27° between our camera located on the ceiling
and the horizontal plane affected the y- and z-axis of each
joint. Therefore, we performed coordinate transformation to
eliminate the influence of the camera tilt. The trajectory of
the i'" joint in the f" frame after angle transformation is
denoted as follows:

f T

iy X; 1 0 0

P = yl.f 0 cos@ —sinf |, feN N
! 0 sin@ cosd

1

where 0 is equal to 27°, i € [1,17]. The results obtained
before and after the angle transformation are shown in Fig. 4.

2) Normalization and Denoising: Different participants had
different body sizes and positions relative to the Kinect
camera. Therefore, the skeleton data required normalization
to avoid errors caused by the individual differences. We used
the spinebase (joint 0) as the origin of the local coordinate
system and subtracted the coordinates of the spinebase from
the coordinates of each joint point for each frame as follows:

f f
¢ xif - xsfuinebase
Pi =0y y;pinebase . feN 2
2~ Zspinebase

where IB;f is the position of the i" joint in the f*" frame after

normalization and i € [1, 17], xs];inebase’ yspinebase’ Zfpinebase
are the 3D coordinates of the spinebase in the f" frame.
After normalization, the 3D coordinates of the spinebase all
became 0 and thus were deleted, bringing the total number of
joints to 16.

In the end, we used a Gaussian filter to smooth the raw data

in each dimension. It was implemented in MATLAB, with a
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Fig. 4. Angle transformation and denoising results. (a) Before angle transformation. (b) After angle transformation. (c) The y-axis of the head joint

in the time domain before and after Gaussian filtering.

sliding window length of 4. Fig. 4(c) provides an example of
the data before and after filtering.

C. TF-Feature Extraction

In [24], the scored-depressed individuals were shown to
have some gait abnormalities relative to non-depressed groups
and a reduced walking speed was found to be an important and
significant feature [28]. In addition to the walking speed, some
studies found that the more often observed gait anomalies
of individuals with depression were a slower cadence and a
lethargic walking style, and even motionless and unresponsive
situations [9], [29].

The slower speed, lower cadence and slumped posture
reflected by individuals with depression indicate that they have
motor retardation to some extent. This motor retardation may
be reflected by not only the walking speed of patients with
depression but also the lower speed of various parts of the
body. In [30], the authors believed that the time variable
exhibited by the limb velocity underlay both emotional percep-
tion and expression. Recent evidence [16] suggested that the
speed curve of joints calculated by the coordinate difference
can represent the nature of walking. Hence, we assume that
the speed variation of each joint over time can be used to
describe the motor retardation exhibited by abnormal gait in
patients with depression. As illustrated in Fig. 1, we utilize
the velocity curve of various body parts to indicate this speed
variation over time. In particular, we regard every coordinate
of each joint in the 3D skeleton data as a time series and obtain
the velocity curve of each joint by calculating the difference
in frames. Moreover, note that some angular features can be
observed in the gait abnormalities, and the angular velocity,
as a new action representation, has been proved to provide
additional discriminative information [31], [32]. Therefore,
to better describe the speed changes of various parts of the
body, we combine the velocity in Cartesian coordinates with
the angular velocity information in spherical coordinates. This
angular information can be obtained by:

r=./x24+y2+22

60 = arccos —
,

y
@ = arctan =
X

3)

where 6 represents the upward and downward pitch of the
joint, ¢ represents the joint around the deflection, and r is the

radial distance between the origin of the coordinates and the
joint. Notably, the radial distance r in (3) may have redundant
information with respect to the original 3D coordinates; thus,
we remove it.

We also regard every angular coordinate of each joint as a
time series and perform a similar frame difference to obtain
the angular velocity curve. The combination of the veloc-
ity and angular velocity curve is called the pseudo-velocity
model. Let the parameter of the i’ joint in the f" frame

Y/ = [x,y,2,0, 9], where i € [1,16] and f € [1, F]. The
pseudo-velocity model is defined as:
2 1 2 1
Yy —v Yie — Yi6
V= : : , YeR’ 4)
F F-1 F F-1
i —-n Yie — Yi6

Previous studies have found that in the processing of gait
data, the use of time-frequency features yields better results
[33]. Therefore, to analyze gait data more comprehensively,
after obtaining the speed variation in various body parts over
time in the time domain, we extract the frequency-domain
features from the pseudo-velocity model, referred to here
as the TF-feature. The PSD is one of the most important
frequency-domain features, showing the strength of the energy
as a function of the frequency. It has been applied to the
classification of neurodegenerative diseases based on gait [34].

In this study, the spectra are calculated via the periodogram
method using a 128-point FFT and periodic Hamming win-
dows. We perform the same PSD analysis on each dimension
of the pseudo-velocity model. For each of the dimensions of
feature a,, the periodogram is defined as:

1 |d ?
P(f) = 5 |2 ane™ 2" )
n=1

where n € [1, N], with N being the sampling segment length
(measured in frames). Given that some features are uninfor-
mative and redundant for classification, we apply the Pear-
son correlation, a commonly used feature selection method,
to select the 10 features with the largest absolute value of the
correlation coefficient on each dimension. For each segment,
we obtain an 800(16 x 5 x 10)-dimensional feature set Jy .
The pseudo-velocity model considers a sequence of joints
as a single time sequence, which could ignore the correlations
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between different joints. Therefore, we also encode the posi-
tional and angular information of the joints with the covariance
descriptor to obtain the correlations between joints, and we
utilize the metric on the SPD space to extract the gait spatial
information.

D. SG-Feature Extraction

Over the past few years, many studies have suggested
that the covariance matrix has a broad range of applications
based on 3D skeleton data, including person identification
[35] and action recognition [36]. Recently, covariance matrices
were shown to be interesting features for gait-based disease
detection [8], [37]. A driving force behind this trend is that the
relationship between joints reflected by the covariance matrix
plays an important role in feature extraction for skeleton-based
recognition tasks and is invariant to the pose and walk cycles
[25], [36]. Furthermore, the resulting descriptors calculated
by the covariance matrix are SPD matrices, which ensures the
metrics on Riemannian manifold can be utilized to analyze
the covariance matrices [13], [38]. Therefore, in this paper,
we utilize covariance-based descriptors to encode the joints’
positional and angular information and utilize the metric on
the SPD space to extract gait spatial information.

Before encoding skeleton data through the covariance
matrix, we first map the skeleton information from Cartesian
coordinates into spherical coordinates. The raw information
contained in the position of the 3-dimensional skeleton is
limited and susceptible to the influence of individual posture;
however, the angle information can avoid these problems
[39]. Moreover, in [40], the authors suggested that the same
data could be easily separated with a straight line in the
polar coordinate system, but the situation was complicated
in Cartesian coordinates. Therefore, the raw data are mapped
from the rectangular coordinate system to the spherical coor-
dinate system to obtain the extended angular information
following (3). Next, we encode the skeletal joint positions
and angles using the covariance matrix, which computes the
correlation between the spatial information of different joints.
Letx (x € RV) be an N-dimensional feature vector containing
information about the positions and angles of 16 joints (after
preprocessing, the number of joints was reduced to 16), with
N = 48(3x16). The skeletal sequence mapped to the spherical
coordinate system is defined as X = [xi,...,xr] € RV*F,
F is the number of frames in the skeletal segment. Thus, the
covariance matrix of the skeletal joint segment X is defined
as:

F

Cov(X) = ﬁ >y —w) (xp— )" (6)
=1
where u is the mean of x ¢, with f € [1, F].

A nonsingular covariance matrix belongs to the set of SPD
matrices, which forms a connected Riemannian manifold [41].
According the Riemannian manifold theory of SPD matrices,
with appropriate metrics, the geometric mean of each class can
reflect the sample distribution of the class [42]. Furthermore,
by taking the Bregman divergence as the metric on the SPD
space, Harandi et al. [43] verified that the distance between

two covariance matrices could be utilized by simple classifiers
to obtain good classification results in action recognition based
on 3D skeleton data. Therefore, in the SPD space, we assume
that, according to the distance between each sample and the
centers of two classes (depression and normal), the detection of
depression can be performed to a certain extent. According to
Algorithm 1, we exploit the training set data to obtain the class
centers of the non-depressed and depressed groups, which are
denoted as Cyx and Cp respectively.

Algorithm 1 Method for Calculating the Center Covari-
ance Matrices
Input: The set of covariance matrices of the same class
o
Output: the center covariance matrix
initialization: Center = % SN Ca,
crit= 108, tolerance = 1073, iteration = 0, maxiter = 50;
while crit > tolerance and iteration < maxiter do
iteration = iteration + 1

—1
-1
1 N Cn+Center
Cpew = N anl (”f) i|

crit = ||Cpew—Center| g
Center = Cpeyp
end

return the center of the covariance matrix Center;

In Algorithm 1, tolerance is the requirement for convergence
stability, and maxiter is the maximum number of iterations.
Then, we calculated the distance d; from each sample
segment to Cy and Cp, leveraging the symmetrized Bregman
divergence, namely the Stein divergence [44]. The distance d
is calculated by:

|(Cx + Cnyp) /2|
|CkChyp|

ds (Ck, Cuyp) = |log @)

where Cj is the covariance matrix of the k" sample. The
distances d; (Cx, Cp/p), as the SG-feature, are fused with
the TF-feature and sent to the prediction step.

E. Fusion of Features and Prediction

Given that depression consists of subtle gait deficiencies
with very complex patterns, taking only a single feature is
insufficient for depression detection. Therefore, we fuse the
TF-feature 6y with the SG-feature d; (Ck, Cr/p). The fused
features are defined as follows:

V = [6v,d; (Ck, Cr/p)] ®)

The TF-feature and SG-feature are concatenated to obtain
the 802-dimensional vector V, which we then feed into a
single fully connected (FC) layer with 802 dimensions. The
FC layer can project the input of two types of features into
the space of other dimensions, which may generate a new
feature that is easier to separate. Following the FC layer is
a softmax layer, from which the final predicted probability
value is obtained. The softmax function projects the feature
of each sample segment onto a scale of the same size, and
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the predicted category has a greater probability value. The
structure of the fusion and prediction is shown in Fig. 1.

[1l. RESULTS AND DISCUSSION

To verify the validity of our method, we design two
experiments. We first analyze the statistical results of the
pseudo-velocity model and the rationality of feature fusion
using our methods. Then, we conduct a comparative analysis
of the current representative methods using our data, which
also used the covariance matrix and the time and frequency
characteristics to analyze Kinect-captured gait data.

We conduct experiments on the depression gait dataset of
postgraduate students described in section II-A. To evaluate the
performance of the classifiers, we adopt a ‘leave-persons-out’
protocol, keeping all segments of a person as the test set and
the other segments as the training set. Since some important
features with small values or negative values may be ignored
when training the model, we use the min-max normalization
method to normalize the features into [—1, 1] before the
classification step [45]. In the fusion and prediction step,
we use a single FC layer with layer size of 802 hidden nodes.
The activation function is ReLU and the loss is estimated as the
cross-entropy loss. The optimizer is Adam with a learning rate
of 1e-5. In addition, the early stopping trick is applied to avoid
overfitting. The accuracy, sensitivity, specificity, F1-score, and
the area under the curve (AUC) of the receiver operating
characteristic (ROC) are used to evaluate the experimental
performance.

A. Experimental Results of TF-Feature and SG-Feature

1) Data Analysis for the Pseudo-Velocity Model: In
section II-C, we build a pseudo-velocity model to analyze
the gait abnormalities. To intuitively illustrate that the
pseudo-velocity model can represent the slower cadence and
motor retardation of patients with depression, we analyze the
means and the standard deviations of the pseudo-velocity
model on four representative joints in our data, as shown
in Table II. To show the difference in the pseudo-velocity
model between the scored-depression and non-depressed
groups more clearly, we list the statistical results of the
pseudo-velocity model on the 4 joints with the greater
amounts of activity in the table, including the right elbow,
right wrist, right hip, and the right knee. Without loss of
generality, we average the absolute values of the velocity
curves and angular velocity curves of the relevant joints in
all segments of the two classes.

As shown in Table II, the averages of the variations in the
velocity and angular velocity of the scored-depressed individ-
uals are generally slower than those of the individuals without
depression during gait. In addition, the scored-depression
group clearly has a smaller standard deviation, which shows
that the range of changes in the velocity and angular velocity
of their related joints is not sufficiently dramatic. The results
suggest that the pseudo-velocity model can describe the motor
retardation and slower cadence of scored-depressed individuals
to a certain extent and has potential value in the characteriza-
tion of depression.

TABLE Il
THE STATISTICAL RESULTS OF THE PSEUDO-VELOCITY MODEL IN THE
SCORED-DEPRESSION (SD) AND NON-DEPRESSED (ND) GROUPS.
WE AVERAGE THE VELOCITY CURVES AND ANGULAR VELOCITY

CURVES OF THE RELEVANT JOINTS FROM ALL SEGMENTS IN EACH

CLASS. WE LIST THE FOUR JOINTS ON THE LIMBS WITH

GREATER ACTIVITY, I.E., THE RIGHT ELBOW (R.ELBOW),

RIGHT WRIST (R.WRIST), RIGHT HIP (R.HIP),
AND RIGHT KNEE (R,KNEE)

X y z 0 ©®
oy 5D 0S1H037 0984065 1044076 026+0.19 0134010
ND  0.53+048 1.19+0.85 1364105 031+024 0.17+0.14
s 5D 053034 1474079 1804124 0394028 0314019
ND 1054070 1854130 255+1.91 0.58+0.42 0.38+0.26
rRitp 2 0.14+£0.13 0254019 0.18+0.15 0.15+£0.12  0.1940.14
ND 0.1540.13 0324023 02140.19 0.1940.15 0.24+0.18
SD  0.89+0.66 1.6241.20 2.64+1.70 1434077 0.2840.20
BRI D 1105087 1912135 3325151 1785129 0314031
TABLE IlI

COMPARISON OF THE FEATURE CLASSIFICATION RESULTS (IN
PERCENTAGE) BEFORE AND AFTER FUSION IN TERMS OF
FOUR EVALUATION CRITERIA (ACCURACY, SENSITIVITY,
SPECIFICITY, AND F1-SCORE). THE BEST RESULTS
IN THIS TABLE ARE LABELED IN BOLD

Accuracy Sensitivity Specificity F1
Velocity 88.844+7.13 90.08+5.99 87.38+£6.64 89.714+12.46
Angle Velocity 83.934+7.33 83.47+6.49 84.47£591 84.87+14.41
TF(Pseudo-Velocity Model) 91.96£5.33  91.744+4.28 92.23+4.45 92.50£9.33

SG 70.98+11.85
TF+SG 93.75+£2.98

72.73+11.64 68.93£11.12 73.03+18.74
93.39+2.20 94.17£2.25 94.17+6.59

2) Feature Fusion Results: The TF-feature is derived from
the pseudo-velocity model, which is composed of the velocity
curve in the rectangular space with the angular velocity curve
in the spherical coordinates. To prove experimentally that
the TF-feature extracted from pseudo-velocity model is more
effective than that using only the velocity curve, we conduct
three experiments, extracting the TF-feature from three differ-
ent velocity models, namely the velocity curve, the angular
velocity curve, and the pseudo-velocity model combining the
first two. In addition, to confirm the effectiveness of the
fused features obtained by our method, we investigate the
classification performance when using only the TF-feature or
SG-feature. The experimental results are shown in Table IIL
When we use only the TF-feature extracted from the three
different velocity models for classification, instead of fusing it
with the SG-feature, the TF-feature is directly fed into the FC
layer. When using only the SG-feature, the method is similar
to that above.

We first compare the classification results using three dif-
ferent velocity models. When the TF-feature is extracted from
pseudo-velocity model, the classification accuracy can reach
91.96%, significantly outperforming the cases in which only
the velocity curve or only the angular velocity is used, and
the sensitivity, specificity and F1-score improve significantly.
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® depression
® normal

(a) (b)

Fig. 5. A t-SNE dimension-reduction visualization map. Each point
represents a segment of the gait skeleton data. The two colors represent
different classes, with data points belonging to the same class having the
same color. (a) 3D perspective of the raw data before feature extraction.
(b) 3D perspective of the fused features.

These results prove that combining the velocity curve with the
angular velocity curve, i.e., constructing the pseudo-velocity
model, is necessary and correct. Then, we compare the results
before and after the fusion of the TF-feature and SG-feature.
As shown in Table III, the classification average accuracy
achieved by using the SG-feature alone is 70.98%. By contrast,
the accuracy using the TF-feature alone can reach 91.96%, but
compared with the fused feature, its performance is lower by
approximately 1.79%. Furthermore, the sensitivity, specificity
and F1-score of the fused feature are also improved by 1.65%,
1.94% and 1.67% respectively. The smaller standard deviations
also indicate that the fused features can effectively alleviate the
impact of individual differences. This finding indicates that
the TF-feature extracted from the pseudo-velocity model is a
more discriminative feature for classification. Furthermore, the
incorporation of the SG-feature can yield better classification
performance.

To more intuitively illustrate whether the fused features are
separable, we visualize the skeleton data before feature extrac-
tion and the fused features through the t-distributed stochastic
neighbor embedding (t-SNE). The t-SNE algorithm can reduce
the high-dimensional data to a relatively low-dimensional
subspace. In this paper, the data are visualized in a 3D space,
as shown in Fig. 5. The visualization map clearly shows that
the two categories of data without feature extraction are mixed
haphazardly, while the features after fusion are separable in
the 3D space. This outcome further illustrates that the fused
features have an enhanced expression ability.

B. Comparison With Different Methods

To investigate the performance advantages obtained by
the fused features, we also compared our method with sev-
eral similar gait research methods. Because the methods
of gait-based depression detection have not yet been well
established, the methods that we compared included the use
of time-frequency characteristics and covariance matrices for
gait-based emotion recognition and other types of disease
analysis. Leveraging the covariance matrices to encode joints’
positional and speed data, a method for classification of
gait disorders arising from Parkinson’s and hemiplegia was
presented in [8]. In [16], the authors proposed a method using

TABLE IV
COMPARISON OF THE CLASSIFICATION RESULTS (IN PERCENTAGE)
BETWEEN OUR METHOD AND OTHER METHODS IN TERMS OF
VARIOUS EVALUATION CRITERIA (ACCURACY, SENSITIVITY,
SPECIFICITY, AND F1-SCORE) AND INDICATIONS OF
SIGNIFICANT DIFFERENCES. THE BEST RESULTS
IN THIS TABLE ARE LABELED IN BOLD

Accuracy Sensitivity Specificity F1
Li et al. [8] 68.30£12.15%* 72.734+11.49** 63.11£11.96** 71.264+18.31**
Li et al. [16] 71.434+14.23%% 74.38+14.72** 67.96+14.51** 73.77+19.85**
Yuan et al. [23] 85.71+7.52*" 85.95+6.79%  85.44+6.50*  86.67+13.78**
Fang et al. [24] 91.58+7.26™ 86.054:6.90* 96.15+8.67 90.2447.15*
Our method 93.75+2.98 93.39+2.20 94.17+£2.25 94.17+6.59
(*: p <0.05, **: p < 0.01)
1

0.9r

0.8

0.7

True positive rate
o
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0.3
—Lietal[8] (AUC=0.7426)
02l L —Lietal[16] (AUC=0.7565)
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False positive rate

Fig. 6.
methods.

The ROC curves between the proposed method and other

the discrete Fourier transform and statistical methods to extract
various time-frequency features to recognize emotion from gait
information. The authors of [23] proposed a method to detect
depression based on the Kinect-captured gait data, and the
researchers utilized the Hilbert-Huang transform to extract gait
frequency features. In [24], the authors applied abnormal gait
features in the time domain to identify depression. Table IV
reports the averages, standard deviations, and indications of
significant differences among various metrics between the
proposed method and other methods.

As shown in Table IV, it can be easily observed that
the mean accuracy of the proposed approach outperforms
other methods, achieving state-of-the-art results. Furthermore,
it should be noted that the standard deviations of our method
are less than that with other methods, which is indicative of
the robustness of the proposed method, emphasizing that the
results are not affected by the test data to a great extent.
We find that there are significant differences between the
experimental results with our method and those with other
methods using the paired sample t-test. This reveals that the
proposed method corresponds to a significant improvement
over other methods. The AUC is known to well validate
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Fig. 7. The training and validation losses curve of the proposed
method.

the performance of binary classification models [46], so we
utilize it to test the discriminability of the models. Fig. 6
illustrates the ROC curve of our approach and other methods.
The AUC of the proposed method is the highest reported,
which characterizes the robustness and stability of our method
for the detection of depression. Fig. 7 presents the train-
ing and validation losses curve of our method. In both the
training and validation sets, total loss converge to 0.023
after 18 epochs. This result further proves that our method
has convergence. In general, by fusing both TF-feature and
SG-feature, our method can alleviate the impact of individ-
ual differences and enhance the classification robustness and
performance.

IV. CONCLUSION

Gait analysis offers a new low-cost and contactless method
for depression detection. Due to the development of inexpen-
sive and portable depth sensors such as Microsoft Kinect, the
advantages of gait analysis in the detection of depression are
further amplified. Therefore, in this paper, a novel framework
is proposed for implementing non-intrusive, real-time and
automatic depression detection from the gait data collected by
Microsoft Kinect. In contrast to previous methods that focused
only on specific abnormal gait characteristics, we innova-
tively propose a pseudo-velocity model to describe the slower
cadence and motor retardation exhibited by gait abnormalities
in individuals with depression; the subsequently extracted
TF-features can well support depression detection. In addition,
to capture complex and irregular gait spatial information,
we encode joint positional and angular information in a
covariance-based descriptor, utilizing the S-divergence on the
SPD space to obtain the SG-feature. The new features obtained
after the fusion of these two types of features are effective in
characterizing and indicating depression. The proposed gait
assessment framework for depression detection using Kinect
could motivate more intelligent, convenient and objective
applications based on depth sensors in the field of automatic
mental health.
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