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Abstract—As the occurrence of depression in society becomes
increasingly more common, it is an urgent task to find more
objective and effective tools for real-time depression assessment.
Gait analysis offers a new low-cost and contactless method for
depression diagnosis. Therefore, interest in gait-based depression
detection using depth sensors, such as Kinect, has grown rapidly
in recent years. In this paper, a pseudo-velocity model is built to
analyze the abnormal gait related to the depression by combining
the velocity and angular velocity of the joints. Subsequently, we
extract some features in time and frequency domain from our
model to establish the classification model for depression de-
tection. Experimental results on depression gait data recordings
from 43 scored-depressed and 52 non-depressed individuals show
that the proposed method achieves a good classification accuracy
of 92.35% and is superior to other existing methods. The
outstanding classification performance suggests that the proposed
method has potential clinical value in depression detection.

Index Terms—Depression, Gait, Pseudo-velocity model, Time
domain, Frequency domain.

I. INTRODUCTION

Depression is one of the leading causes of various burden
diseases. It has affected approximately 264 million people
worldwide and is expected to increase in upcoming decades
[1], [2]. In recent years, gait has received more and more atten-
tion in depression researches. Compared with other research
methods, such as the use of audio, text, magnetic resonance
imaging (MRI), and electroencephalogram (EEG) [3]–[6], gait
acquisition does not require a high-resolution device and can
provide a contactless method during the acquisition process.
With the advent of low cost, non-intrusive depth sensors like
Microsoft Kinect [7], we can trace human body dynamics
accurately in a 3D manner without the assistance of additional
markers or the requirement of specifically designed environ-
ment, further amplifying the advantages of gait analysis in the
depression detection.

Because of these advantages, gait analysis has been increas-
ingly applied in the detection of depression and has been
shown to reliably distinguish depressed people from healthy
individuals. Lemke et al. [8] reported a linear correlation
between walking velocity and depression severity. In addition,
a slouching posture was often reported as a prominent feature
of patients with depression during gait movements [9], [10].
Another study on elderly depression suggested that shorter
steps and slower gait were associated with depression [11].

*The corresponding author : pengh@lzu.edu.cn

Fang et al. [12] also found an association between gait ab-
normalities and depression, such as reduced walking velocity,
smaller stride length, shoulder, and elbow range of motion.

After reviewing related work on gait-based depression de-
tection, we divide these studies into two main categories.
First, researchers regarded human gait sequences as time
sequences and recognized depression by the differences of
gait parameters such as walking speed, stride length, and body
sway [9]. Second, researchers performed feature extraction on
gait data in the frequency domain. In [13], the authors used
the frequency features obtained by the Fast Fourier Transforms
(FFT) to establish a classification model for depression recog-
nition. Reference [14] treated the trajectory of gait as a signal
and proposed a new direction to detect the depression with
frequency-domain features based on Hilbert-Huang transform.

However, some issues still exist in the current gait research
for depression detection. On the one hand, although many
studies have shown that lower walking style is the most sig-
nificant abnormal gait characteristics in gait-based depression
detection [8], [9], the current methods for the extraction of gait
abnormality mainly focus on a certain dimensional coordinate
of a few special joints and only concentrate on the frames with
extremely abnormal gait, which leads to inadequate expression
of gait abnormalities. On the other hand, gait analysis of
patients with depression should not be limited to the gait
parameters in the rectangular coordinate system, but it also
considers other characteristics such as angular velocity in the
spherical coordinate system.

To address these issues, we construct a pseudo-velocity
model for the more comprehensive analysis of the gait skele-
tal data, by combining the velocity curve in the Cartesian
coordinate system with the angular velocity curve in the
spherical coordinate system. Then, some features in time
and frequency domain are extracted from the pseudo-velocity
model to establish the classification model for depression
detection. Experimental results demonstrate that our method
outperforms other methods considered for comparison with
an accuracy of 92.35%.

The remaining part of this article is organized as follows: in
section II, we introduce the gait data collection and describe
the proposed method in detail. The experimental results are
reported in section III. Finally, we conclude this paper in
section IV.
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II. MATERIALS AND METHODS

A. Data Acquisition

The research recruited 95 graduate students aged between
22 and 28. The Local Research Ethics Committee sanctioned
the research and it also got the consent of the participants
before the experiment. We divided the participants into two
groups according to two classic scales: the Patient Health
Questionnaire (PHQ-9, Chinese version) [15], Zung Self-
rating Depression Scale (SDS, Chinese version) [16]. The
non-depressed group contained 52 individuals (M: 28, F: 24),
and the scored-depressed group contained 43 (M: 23, F: 20)
participants. The basic information of the subjects is shown in
Table I.

The experimental environment setting was similar to that
of [12]. We required the participants to perform two round-
trip walks in a daily normal state on the 10-meter footpath.
Two Kinect V2 were installed in the middle of the ceiling at
a distance of four meters, facing each other, with an angle
of -27◦ relative toward the path. The cameras recorded the
skeleton joint coordinate streams at a frame rate of 30 Hz.
It should be noted that the two cameras were installed in
the middle of the ceiling rather than recording data at the
beginning edge, because the subjects’ gait data might be the
most stable and closest to the normal walking state at this time
when they walked to the middle of the path.

B. Data Preprocessing

The skeleton streams used in the experiment are composed
of 3D information from 25 joints of the entire body and
the indexes of the joint points are shown in Fig. 1. In
each recording, two Kinect devices recorded the skeleton gait
data from both front and back views. Previous reports have
confirmed that the effectiveness of using the skeletons from
the front view is better than those from the back view [12];
thus, we use the segments in front view for our study. Although
there is an angle of 27◦ between our camera and the horizontal
plane, it does not affect the pseudo-velocity model we build
later. In the end, we use a Gaussian filter to smooth the raw
data in each dimension. It is implemented in MATLAB, with
a sliding window length of 4.

C. Establishment of Pseudo-Velocity Model

Reviewing the current studies on gait-based depression de-
tection, we find that gait speed is an important and significant
feature among gait abnormalities [8], [11]. The authors of
[12] also found that slower walking speed was correlated with
other gait abnormalities. In our dataset, the difference in speed
between non-depressed and scored-depressed also exists, as
shown in Fig. 2. Furthermore, in previous studies, changes
in speed over time have been proven to represent human
movement. In [17], the authors suggested that the speed curve
of joints calculated by the coordinate difference can represent
the nature of walking. The time variable exhibited by the limb
velocity was used to represent both emotional perception and
expression in [18]. Therefore, we try to build a velocity model
that can help us analyze the gait data of depressed patients.

Fig. 1: The 25 markers on the human skeleton generated by
Kinect V2.

TABLE I: Basic information of the scored-depressed and non-
depressed groups.

Scored-depressed Non-depressed

Cases(n) 43 52

Sex, M:F 23:20 28:24

PHQ-9 (means ± S.D) 13.04±4.31 2.04±2.72

SDS (means ± S.D) 62.73±7.34 36.85±7.21

The original data is in the rectangular coordinate system.
Each frame represents a different position of the joint point.
We regard every coordinate of each joint in the 3D skeleton
data as a time series and perform a frame difference to
obtain the speed variation of each joint over time. In other
words, we obtain the moving distance of each joint within
33ms, which is called the velocity curve. However, we find
that the gait feature expressed by the velocity curve in the
rectangular coordinate system is limited. Furthermore, some
studies have regarded the angular velocity as a new action
representation which could provide additional discriminative
information [19], [20]. To better describe the pseudo-velocity
model, we combine velocity in the rectangular space with the
angular velocity information in the spherical coordinates. The
conversion relationship between the rectangular coordinate
system (x,y,z) and the spherical coordinate system (r, θ,ϕ) is
shown in Eq.(1). Where r is the radial distance, θ represents
the up and down pitch of the joint, as shown in Fig. 3a; ϕ
represents the joint around the deflection, as shown in Fig. 3b. r =

√
x2 + y2 + z2

θ = arccos zr
ϕ = arctan y

x

(1)
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Fig. 2: The difference in speed between non-depressed and
scored-depressed.

After mapping the data from Cartesian coordinates into
spherical coordinates, we also calculate frame difference on
the data in spherical coordinates to obtain the angular velocity
curve. The pseudo-velocity model is constructed by combining
the velocity curve and angular velocity curve. Let the param-
eter of the ith joint in the f th frame Y fi = [x, y, z, r, θ, ϕ],
where i ∈ [1, 25] and f ∈ [1, F ]. F is the number of frames
in the skeletal segment. The pseudo-velocity model is defined
as:

V =


Y 2
1 − Y 1

1 . . . Y 2
25 − Y 1

25

...
. . .

...

Y F1 − Y F−1
1 · · · Y F25 − Y F−1

25

 , Y ∈ R6

(2)

D. Feature Extraction

In this section, to comprehensively analyze the proposed
pseudo-velocity model, we extract two types of features from
our model, including time-domain features and frequency-
domain features. The same feature extraction is performed on
each dimension of the pseudo-velocity model.

1) Time-domain Features: In the experiments, we use a sta-
tistical approach to extract the time-domain features from the
pseudo-velocity model [21], [22]. For each of the dimensions
of feature V = [v1, . . . , vF ]

T, the following statistical features
are extracted.

• Standard deviation of the signal measures the spread
of the amplitude distribution, the standard division is
computed as follows:

σV =

√√√√ 1

F − 1

F∑
f=1

(vf − µV)
2 (3)

where µV is the mean of the signal.

Frame
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)

(b)

Fig. 3: Head joint is represented in a spherical coordinate
system. (a) Diagram of the head joint at θ. (b) Diagram of
the head joint at ϕ.

• Skewness of the signal describes the asymmetry of the
amplitude distribution, it is calculated as follow:

ξV =
1
F

∑F
f=1 (vf − µV)

3{
1
F

∑F
f=1 (vf − µV)

2
}3/2

(4)

• Kurtosis is computed to measure how the amplitude dis-
tribution decays slowly near the extremes, it is calculated
as follow:

γV =
1
F

∑F
f=1 (vf − µV)

4{
1
F

∑F
f=1 (vf − µV)

2
}2 (5)

• Mean Trend describes the trend in the means over the
signal. For a gait segment with definite length, we divide
it into n equal windows with no overlap, in our approach,
n=5. If the data cannot be evenly divided, we need to
carry out zero filling. The mean for each part is calculated
and subtracted from the mean of the following windows.
The sum of the absolute values of these distances between
adjacent window, called the mean trend, is calculated as
follow:

MT =
n∑
i=2

(|µi − µi−1|) (6)
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where µi represents the average value of each window.

There may be some non-linear characteristics in our pseudo-
velocity model. So in this paper, sample entropy is extracted
as non-linear features to describe the characteristics of gait,
which have been applied in the analysis of gait data [23].

• Sample entropy measures the complexity of time series
data and has been widely and successfully applied in the
analysis of biological signal sequences. The procedures
of sample entropy are as follow:
Given a time series data {xi} with i ∈ [1, N ], the original
signal can be constructed into an m-dimensional vector
as follow:

X(i) = [xi, xi+1, · · ·xi+m−1] , i ∈ [1, N−m+1] (7)

where m is the embedding dimension and N is the length
of time series.
The distance between any two vectors X(i) and X(j) is
defined as d[X(i), X(j)], which is the maximum absolute
difference between the corresponding elements in two
sets of vectors, namely:

d[X(i), X(j)] = max (xi+k − xj+k) (8)

where k = 0, 1, 2, . . . ,m− 1.
Given the value of the tolerance level r, for each i, the
number of d[X(i), X(j)] < r is calculated as Ni, and
the ratio of Ni to the total distance N −m−1 is defined
as:

Bmi =
Ni

N −m− 1
(9)

where 1 ≤ j ≤ N −m− 1, j 6= i, the average of Bmi is
calculated as follow:

Bm =
1

N −m

N−m∑
i=1

Bmi (10)

Based on the derivation of above, the Sample entropy is
defined approximately as the following formula:

SampEn(m, r,N) = − ln
[
Bm+1(r)/Bm(r)

]
(11)

2) Frequency-domain Features: Some studies found that
in the processing the gait data, the use of time-frequency
features have better results [24]. Therefore, after obtaining the
time-domain features, we try to extract the frequency-domain
features from the pseudo-velocity model.

The power spectral density (PSD) is one of the most
important frequency-domain features, it shows the strength of
the energy as a function of frequency. In [25], the authors
computed statistical features of the PSD of gait signals, which
they then fed into the support vector machine (SVM) and naive
bayes to classify the neurodegenerative diseases. In this study,
the spectra are calculated via the periodogram method using a
128 point FFT and periodic Hamming windows. We perform

the same PSD analysis on each parameter [x, y, z, r, θ, ϕ]. For
each axis an, the periodogram is defined as follow:

P (f) =
1

N

∣∣∣∣∣
N∑
n=1

ane
−j2πfn

∣∣∣∣∣
2

(12)

where N is the sampling length (measured in frames).

E. Feature Selection

Considering the high-dimensional feature is uninformative
and redundant for classification, the dimension reduction is
required before model training. We apply the Pearson corre-
lation to select the 5 features with the largest absolute value
of the correlation coefficient on each dimension, respectively.
After feature selection, we obtain five features for each axis
of each joint, which generates a 750(25× 6× 5)-dimensional
feature set in each segment.

III. EXPERIMENTAL RESULTS

To verify the validity of the proposed method, a set of
experiments are designed and conducted using the depression
gait dataset of postgraduate students described in section
II-A. We first analyze the classification results of different
features. Then, we conduct a comparative analysis of the
current methods.

After two types of features are obtained from the pseudo-
velocity model, we normalize these features and feed them into
SVM classifier with Linear kernel for depression detection. A
linear kernel SVM has good performance in the case of small
number of training samples and large number of features and
can also reduce the risk of overfitting the data [26]. In this
study, SVM is implemented using LIBSVM toolbox [27] with
default parameters, which has been successfully applied to
gait analysis [12]. We adopt a ‘leave-persons-out’ protocol,
keeping all segments of a person as the test set and the
other segments as the training set. In the prediction step, the
accuracy, sensitivity, specificity, F1-score, and the area under
the ROC curve (AUC) are used to evaluate the performances
of the proposed method.

A. Classification Results With Different Features

To determine which set of features derived from the pseudo-
velocity model can best represent the gait signal, several
experiments are conducted with different combinations of two
types of features. The obtained results are presented in Table
II.

In the case of using only time-domain features, the classifi-
cation accuracy is 71.18%. When frequency-domain features
are used, we achieve an accuracy of 91.61%, with a sensitivity
of 89.13% and specificity of 94.12%. By contrast, the accuracy
of using the time-domain and frequency-domain features can
reach 92.35%. Furthermore, the sensitivity and F1-score of
the fused feature are also improved by 5.1% and 2.33%
respectively. This finding indicates that the fused feature in the
time and frequency domain is a more discriminative feature
for classification. Therefore, the fusion of the two types of
features is selected for subsequent experiments
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TABLE II: Comparison of the classification results with differ-
ent combinations of time-domain features(TF) and frequency-
domain features(FF) in terms of four evaluation criteria (ac-
curacy, sensitivity, specificity, and F1-score).

Accuracy Sensitivity Specificity F1

TF 0.7118 0.7596 0.6364 0.7633

FF 0.9161 0.8913 0.9412 0.9145

TF+FF 0.9235 0.9423 0.8939 0.9378

B. Comparison With Different Methods

To investigate the performance advantages of our approach,
we also compare our approach with several similar gait
research methods. Leveraging the Hilbert-Huang transform
to extract frequency features, a method for classification of
depression detection from gait information was presented in
[14]. The authors of [12] applied abnormal gait features in the
time domain to identify depression. The results of the proposed
method and the other methods are shown in Table III.

As shown in Table III, the proposed method achieves
the highest accuracy compared with other existing methods.
At the same time, we find that F-score and AUC have a
significant improvement, indicating that our method has a
stronger generalization ability. To more intuitively illustrate
the validity of the proposed method, we plot the results from
different studies in a radar chart, as shown in Fig. 4. According
to the data in the figure, our method performs well and the
indicators in all aspects are more balanced. Thus, with the
time-domain and frequency-domain features extracted from
the pseudo-velocity model, our method is proven to be very
effective, which can reduce model complexity and enhance the
classification performance.

Fig. 4: Comparison of classification performance between our
method and other methods. The best results in this table are
labeled in bold.

TABLE III: Comparison of our method with other methods
in terms of various evaluation criteria (accuracy, sensitivity,
specificity, F1-score and AUC).The best results in this table
are labeled in bold.

Accuracy Sensitivity Specificity F1 AUC

Yuan et al. [14] 0.8304 0.8347 0.8252 0.8417 0.9182

Fang et al. [12] 0.9158 0.8605 0.9615 0.9024 0.8994

Our method 0.9235 0.9423 0.8939 0.9378 0.9783

IV. CONCLUSION

Gait analysis offers a new low-cost and contactless method
for depression detection. By analyzing the gait behavior of
patients with depression, we find that velocity plays an impor-
tant role in the classification of depression. Therefore, in this
paper, we establish a pseudo-velocity model to analyze gait
abnormalities in individuals with depression; the subsequently
extracted features in time and frequency domain can well
support depression detection. Experimental results show that
the pseudo-velocity model and the features extracted from
it can effectively identify depression. The proposed method
provides a non-intrusive, real-time, and automatic depression
detection.

However, in the current study, we only consider the gait
skeleton data from the front view. To obtain gait informa-
tion more comprehensively and precisely, we can reasonably
arrange the positions of the Kinect devices to obtain gait
data from multiple angles in the future. Another issue is that
we only make a binary classification of depression patients
and do not consider the degree of depression. Patients with
different degrees of depression may differ in analysis methods
and feature extraction, so more research on the relationship
between the degree of depression and its features need to be
conducted in the future to better support depression analysis.
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