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a b s t r a c t 

Electroencephalogram (EEG) signals play an important role in the epilepsy detection. In the past decades, 

the automatic detection system of epilepsy has emerged and performed well. In this paper, a novel 

sparse representation-based epileptic seizure classification based on the dictionary learning with homo- 

topy (DLWH) algorithm is proposed. The performance of the proposed method evaluates on two public 

EEG databases provided by the Bonn University and Childrens Hospital Boston-Massachusetts Institute 

of Technology (CHB-MIT), various classification cases that include health and seizure; non-seizure and 

seizure; inter ictal (seizure-free interval) and ictal (seizure). The results show that the DLWH only com- 

pletes the test with 19.671 s compared with the traditional sparse representation methods with high 

degree of automation, which are better than those obtained using the well-known dictionary learning 

method. Besides, two publicly available benchmark databases recognition rates are as high as 100%, 99.5%, 

with average of 99.5% and 95.06%,% respectively, and the results show that the epileptic detection system 

based on the dictionary learning has a high application value. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Epilepsy is the second most common serious nervous system

isease after the stroke [1] . It is a chronic nervous system disease

haracterized by the recurrent and unprovoked seizures [2] . About

5 million people worldwide have been affected from the epilepsy.

lectroencephalogram (EEG) is an important clinical tool for mon-

toring, diagnosing and managing the epilepsy-related neurological

iseases [3] . Doctors and neurologists analyzed these signals to

ssess states of the brain, which may be a time consuming pro-

ess. EEG based on the computer-aided techniques was found very

ffective in diagnosing the epilepsy compared with other methods
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4–6] , such as the electrocardiogram (ECOG). Besides, EEG was a

onvenient and safe technique for monitoring the brain activity

7–9] . 

Almost one third of epilepsy patients are currently untreated

10,11] . Despite the choice of diet, medication and surgical treat-

ent, they suffered from sudden and unpredictable seizures that

ad a great impact on their daily lives and temporarily impair

heir perception, speech, motor control, memory and conscious-

ess [12] . Many new therapies have been researched, and one

f the most promising therapies was implantable devices that

rovided the direct electrical stimulation to affected areas of the

rain [13] . These processes relied heavily on the robust algorithms

or the epileptic detection to perform effectively. Because epilep-

ic seizures cannot be predicted in a short period of time, it is

ecessary to continuously re-record EEG to detect the epilepsy.

owever, it is tedious, time-consuming and costly to analyze the

ong visual EEG records to find traces of the epilepsy [14] . There-

ore, the automatic detection of the epilepsy has been being the

oal of many researchers. With the development of technology, the

igital EEG data can be fed into the automatic seizure detection

ystems, allowing doctors to treat more patients in a given time,

ue to the fact that the automation greatly reduces the time spent

xamining EEG data [15–17] . 
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In recent years, automatic classification models with epileptic

seizures have made a lot of progress in applications of pattern

recognition (PR). In addition, there are many classification meth-

ods for EEG signals, of which the multi-layer perception neural

network (MLPNN) and the support vector machine (SVM) are two

widely used classification models. Most automatic epilepsy detec-

tion systems are based on the feature extraction and various classi-

fication models. In [18] , Polat et al. presented a hybrid system with

two stages: the feature extraction using (fast fourier transforma-

tion) FFT and the decision tree classifier with 98.68% and 98.72%

accuracy, respectively. Fu et al. presented a new technique for the

seizure classification of EEG signals using the Hilbert–Huang trans-

form (HHT) and SVM in [19] . Further, the spectral entropies and

energy features of frequency-bands of the rhythms using hilbert

marginal spectrum (HMS) analysis were extracted and combined

with the SVM. The entropy was the measure method of uncer-

tainty. Wang et al. applied the Wavelet transform and Shannon

entropy to the feature extraction method and fed into k near-

est neighbor (KNN) classifier with the best classification accuracy

about 100% in [20] . Furthermore, Nicolaou et al. used the Permu-

tation Entropy (PE) as a feature extraction approach in [21] . The

low computational complexity of PE constituted as an advanta-

geous feature part of a system for the real-time automatic seizure

detection. In [22] , Kumar et al. used the discrete wavelet transform

(DWT) analysis and the approximate entropy (ApEn) of EEG signals.

Abundant and significant results are achieved on the wavelet trans-

form. In [23,24] , both Subasi et al. and Guo et al. use the discrete

wavelet transform model and made a series of progress. More-

over, Farrikh et al. presented (discrete wavelet transform) DWT and

adaptive hybrid feature selection within bagging with multi-layer

perception (MLP) detection for epileptic seizure in [25] . 

In this work, we propose a method based on the dictionary

learning and sparse representation to classify seizures for the first

time. The presented clinical EEG databases provided by the Bonn

University [26] and Children’s Hospital Boston-Massachusetts In-

stitute of Technology (CHB-MIT) [27–29] , which are also applied

to this paper. The results show that the proposed scheme pos-

sess both high classification rate and high recognition speed in

the seizure identification. In addition, it shows that the automatic

detection and diagnosis can be realized in a kind of real-time

epilepsy support system. So far, no related studies on the classi-

fication scheme has been conducted on the epilepsy based on the

dictionary learning with homotopy (DLWH). The remainder of this

paper is organized as follows. Related researches on the classifi-

cation of seizures are provided in Section 2 In Section 3 , techni-

cal components which include the preprocessing, the linear sparse

representation model, the sparse representation by minimization,

the dictionary learning with homotopy algorithm and classifica-

tion approach are introduced. Furthermore, a brief description on

the experimental procedures and results are provided in Section 4 .

There are discussions and conclusions at the end of this paper. 

2. Related work 

Epileptic seizure classification and detection have been stud-

ied for several years. Specifically, beyli presented a combination of

three different EEG signals (sets A, D and E) with wavelet coeffi-

cients, and the overall classification accuracy rate was 93.17% [30] .

Altunay et al. used the linear predictive error energy method for

five sets, with their reported acuuracy up to 93.6% [31] . A cluster-

ing technique based on the least squares support vector machine

(CT-LS-SVM) was presented in [32] , with the classification accu-

racy of EEG 94.18%. In [33] , a cross-correlation SVM classifier for

EEG classification was presented by Chandaka. In [34] , Least-Square

Support Vector Machine (LS-SVM) was applied to classify two sets

of EEG signals (sets A and E), and the classification accuracy rate
eached 99.56%. Furthermore, in [35] , the classification results and

tatistical parameter value indicated that the PNN classifier could

istinguish the difference of EEG signals, meanwhile, the total clas-

ification accuracy was as high as 97.63%. Liang et al. employed

he ELM algorithm that was extract nonlinear features, i,e., approx-

mate entropy, Hurst exponent and scaling index, for the classifica-

ion of interictal epilepsy and ictal EEG signals [36] . Acharya et al.

xtracted four entropy features to train seven classifiers, and the

uzzy classifier had been proven that three categories could be dis-

inguished with the overall classification accuracy rate being 98.1%

37] . Li et al. employed the online optimization algorithm for dic-

ionary learning to obtain a new dictionary, meanwhile, they also

ntroduced the elastic net to make the system robust for the test

amples [38] . In addition, the EEG database provided by the CHB-

IT is applied in many studies. Ahmad et al proposed a method

hat did not require requires any preprocessing of the data, which

as unsupervised and fully automated [39] . In [40] , principal com-

onent (PCA) and common spatial patterns (CSP) was applied to

nhance the EEG signals, then, the extracted discriminant features

as used as input to the distance based adaptive change point de-

ector to identify seizures. 

. Mathematica methods 

We propose a dictionary learning framework in this paper. The

utline of the system is shown in Fig. 1 . It illustrates several parts

f this algorithm, which includes the preprocessing, DLWH and

lassification. Then, we will introduce each part detailedly in the

nsuing sections. 

.1. Preprocessing 

Before using DLWH classification method to identify the epilep-

ic EEG, it is necessary to preprocess the EEG signals, which makes

he characteristics of the seizure period more differentiable. Note

hat we use 0.1–49 Hz bandpass filter in this paper. Besides, it

s conducted to maintain the phenomena, such as sharp waves,

pikes and characteristic waves, that often occurs during seizures,

o that the difference between EEG signals in the attack period

nd intermittent EEG signals in the episodes is more obvious. Then,

LWH based on the sparse representation classification method is

sed to perform pattern recognition on the two types of prepro-

essed EEG data. As a continuation, a sparse representation matrix

s constructed, which uses an EEG training set, and the details are

hown in the following subsections and Fig. 1 . In order to find co-

fficients of the vector x , we use � 1 regularization in the test signal

 . Thus, we learn to get the dictionary D , which is the sparse rep-

esentation algorithm in the brain dictionary in seizures and inter-

ittent brain dictionaries, with residuals associated with seizures

nd non-seizures sub-dictionary being calculated, respectively. Ac-

ually, the test signal is classified as two categories, i.e., seizures

nd non-seizures, by comparing with the reconstructed residuals.

esides, the final classification results are satisfied with the diag-

ose in real time by the clinician. 

In this section, we will introduce the sparse representation

odel of test signals and training signals. In the mean time, we

ill depict the usage of the model. Specifically, Fig. 2 shows a dic-

ionary describing the design process of the linear sparse repre-

entation model. Firstly, we get the test signal y , and use the same

rocess to get the column of dictionary D . Therefore, the test signal

s converted to the vector y ∈ R 

m , and the dimension is consistent

ith that of the dictionary D . Beyond that, the test signal y can

e represented by a linear sparse representation of the column of

ictionary D . 

Suppose that there is a group of linearly irrelevant base

 

α , α , . . . , αn ] ∈ D , an n -dimensional signal y ∈ R 

n can be linearly
1 2 
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Fig. 1. Frames include three step: pro-processing, constructing dictionary D with dictionary learning algorithm, and diagnosis decision. 
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Fig. 2. The design on a dictionary and linear sparse representation model. 
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epresented as 

 = 

m ∑ 

i =1 

x i αi = x 1 α1 + x 2 α2 + · · · + x i αm 

. (1) 

q. (1) can be reconstructed as 

 = Dx . (2) 

here x = [ x 1 , x 2 , . . . , x m 

] 
T represents the expansion coefficient of

he signal y on the basis, and D ∈ R n × m is the dictionary matrix.

n this research, we assume that a noise-free model is the sparse

quation expression. 

• If n > m, D is an incomplete dictionary, some vector dictionar-

ies in space can not be effectively represented. 

• If n = m, D is a complete dictionary. 

• If n < m, D is an incomplete dictionary. In addition, when the

system of linear equations is undetermined, the expansion co-

efficient vector x has infinite solutions. 

If some expansion coefficients are large and others are zero

r small, the signal can be sparsely represented. Mallat et al.

resented a theory in [41] , which illustrates a matching tracking

alculation of the super complete dictionary decomposition. The

parse representation of the signal uses base functions as few as

ossible to represent the signal in a given overcomplete dictionary,

hich is to simplify and effectively express the original signal [42] .
.2. Sparse representation by minimization 

In recent years, Wright et al. presented a classification algo-

ithm based on the sparse representation classification (SRC) and

pply it to the face recognition [43] . In the SRC algorithm, test

amples are sparsely represented in training dictionaries composed

f different types of training samples. Then, the reconstruction er-

ors of different types of training samples are calculated, and com-

ared with complete classification and recognition according to the

inimum reconstruction errors. This algorithm breaks the tradi-

ional feature extraction and pattern recognition. 

The sparsity of coefficients can be defined by � 1 -norm, and the

ess non-zero elements in the coefficient vector, the greater the

parsity of signals. After introducing constraints, the signal y can

e expressed as follows: 

rg min ‖ x ‖ 0 subject to y = Dx (3) 

Although the � 0 -norm plays an important role in the represen-

ation of signal sparsity, its solution process is quite complicated.

owever, in recent researches on the compressed sensing, � 1 min-

mization technology is applied to the signal reconstruction. Fur-

hermore, many researchers have proved that the � 1 -norm opti-

ization problem has the same solution as � 0 -norm optimization

nder the constrained isometric conditions [44] . Thereby the for-

ula (3) can be equivalent to the � 1 -norm optimization, which is

xpressed as 

rg min ‖ x ‖ 1 subject to y = Dx (4) 

Specifically, Fig. 3 shows the minimization process of � 1 -norm

nd � 2 -norm by two-dimensional examples, which illustrates the

eason that � 1 minimization is able to find sparse solutions. In

he norm theory, � 1 -norm and � 2 -norm can be expressed as vec-

ors on the surface of circles and diamonds in, respectively. The

rey dotted line corresponds to an isobar of constant model loss

s achieved at each combination of � 1 and � 2 . 

A training dictionary X = [ X 1 , X 2 , . . . , X K ] is constructed by a K -

lass training sample set, where X i = 

[
X 1 

i 
, X 2 

i 
, . . . , X 

m i 
i 

]
∈ R 

n ×m i r ep-

esents the training sample set of class i with i = 1 , 2 , . . . , K. Since

his study only considers two conditions, i.e, epilepsy and non-

pilepsy, the value of K is set as 2. For the test sample y ∈ R 

n , the

parse representation using the training dictionary is given as fol-

ows: 

 = X α (5) 
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Fig. 3. The minimization process of � 1 -norm and � 2 -norm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Pseudo-code implementation of the SRC method. 

Sparse Representation Classification Algorithm (SRC) 

Input: Training signal A ∈ R m ×2 N t for I classes, a test signal y ∈ R m ×1 

Output: The class label y for test data 

Step 1: Normalize the columns of A and y 

Step 2: Code y over x via � 1 -minimization; 

solve the convex optimization problem: according to Eq. (4) , where 

the constant ε is to account for the dense small noise in y or to 

balance the coding error of y and the sparsity of α

Step 3: Calculate the residuals for class i according to Eq. (7) , where αi is 

the coding coefficient vector associated with class i 

Step 4: Output the identity of y ; calculate the class ( y ) according to Eq. (8) 

End 

w  

r  

r  

t  

t  

m  

d

�  

w  

t  

t  

a  

c  

m

C  

U

 

A  

c  

c

i  

r  

a  

a  

i

where α = 

[
αT 

1 
, αT 

2 
, . . . , αT 

K 

]T 
and αj r epr esents the sparse r epr e-

sentation vectors of test sample y on the j th class training sample

set. If the test sample y belongs to class i , the training sample set

of class i can better represent the same data y , while the coeffi-

cients in other vectors αj ( j � = i ) are zero or smaller. As shown in

Eq. (6) , the solution of the sparse coefficient is obtained through

the minimum � 1-norm optimization problem. 

∧ 
a i = arg min ‖ 

X α − y ‖ 1 subject to ‖ 

X α − y ‖ 2 ≤ ε (6)

After obtaining the sparse vector 
∧ 
a i , the test samples is recon-

structed by using various training samples X i and corresponding

sparse vector 
∧ 
a i , and the corresponding reconstruction errors of all

types are calculated. Then the test sample y and the most accu-

rate reconstruction training sample set belong to the same cate-

gory, that is 

identity (y ) = arg min 

i 

∥∥∥y − X i 

∧ 
a i 

∥∥∥
2 

(7)

After solving the � 1 minimization problem, the non-zero ele-

ment x must be correspond to class column i . Because the EEG

signal is geatly noisy and non-stationary, non-zero elements may

exist in the projection coefficient vectors of other classes due to

the presence of noise. In order to use the sparse representation re-

sult coefficient vector x . The non-zero vector caused by noise will

not have a great impact on the reconstruction of the test samples.

Thereby, y belongs to the same category as the training samples

that can accurately reconstruct it, i.e., the category to which the

training samples corresponding to the minimum reconstruction er-

ror belongs is the category of the test samples y , and the classifi-

cation rules are given: 

class ( y ) = arg min 

i 
r i ( y ) (8)

Besides, we conclude the SRC algorithm shown in Table 1 . 

3.3. Dictionary learning with homotopy (DLWH) 

Dictionary learning is proposed by Mairal et al. [45] , which

learns from the original training signals, and aims to construct

a new dictionary for the test signal. Given a training set X =
[ x 1 , x 2 , . . . , x n ] , the goal of the dictionary learning algorithm is to

maximize the empirical loss function f n ( D ) that is given as follows:

f n ( D ) = 

1 

n 

n ∑ 

i =1 

l ( x i , D ) (9)
here l ( x i , D ) is a loss function, and whether the dictionary could

epresent the signal commendably is determined by its value, n

epresents the dimension of the training signals. Every column of

he dictionary is a basic vector, which is named atom. In general,

he specific atom in dictionary D is an important factor in deter-

ining whether a test signal can be well represented. Here, we

efine the loss function as 

 ( x i , D ) = αi = arg min 

αi 

1 

2 

‖ 

x i − D αi ‖ 

2 
2 + λ‖ 

αi ‖ 1 (10)

here λ denotes the regularization parameters, which improves

he generalization ability of this model. Meanwhile, αi represents

he k -dimensional coefficient vector. Besides, to solve this problem,

 � 2-norm (less than or equal to 1) is applied to constrain each

olumn of D . According to [46] , we define C as the convex set of

atrix: 

 = 

{
D ∈ R 

m ×k s. t. ∀ j = 1 , . . . , k 
∥∥d j 

∥∥
2 

≤ 1 

}
(11)

pdating the loss function to Eq. (10) , we can get 

f n ( D, α) = arg min 

D 

∈ C, αi ∈ R 

k ×n 1 

n 

n ∑ 

i =1 

[ 
1 

2 

‖ 

x i − D αi ‖ 

2 
2 + λ‖ 

αi ‖ 1 

] 

(12)

lthough f n ( D, αi ) is not a convex optimization function in the

ase where both the dictionary D and the coefficient vector α are

hanged, and when one of the dictionary D and the coefficient α
s fixed, then f n ( D, αi ) is convex optimization with respect to the

emaining one. To deal with this situation, one of the two vari-

bles of the dictionary D and the coefficient vector are kept fixed,

nd the empirical loss function is minimized by the remaining one

teration. 



H. Peng, C. Li and J. Chao et al. / Neurocomputing 424 (2021) 179–192 183 

 

b  

e  

E  

a  

t  

λ  

t  

c  

o

∂

S  

w

u

T  

w  

c  

∂

c

A  

k

I

T  

n  

a  

fi  

d  

i  

b

d

A

B

 

d  

d  

i  

g  

d  

f  

a  

c  

a  

f  

o  

c  

i

3

 

s  

e  

t  

l  

Table 2 

Pseudo-code implementation of the DLWH method. 

Dictionary learning with Homotopy 

Input: training feature x ∈ R m × n 

Output: learned dictionary D 

I: Initialtize the dictionary D 0 ∈ C , N is the number iterations, A 0 = 0, B 0 = 0 

II: For t = 1 . . . N do 

select x t from the original training samples and updata the sparse 

coefficient,by solving equation. 

compute the α using Homotopy algorithm 

α = arg min 
α

1 
2 ‖ y − Dα‖ 2 2 + λ‖ α‖ 1 

III: Updata A and B 

A i = A i −1 + αi α
T 
i 

B i = B i −1 + x i α
T 
i 

IV: Updata D using block coordinate decent algorithm using as follows: 

min 
D 

1 
2 ‖ x i − D αi ‖ 2 2 s.t. 

∥∥d j 
∥∥

2 
= 1 , j = 1 , 2 , . . . , k 

End for 

End while 
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As one of the greedy algorithms, the homotopy method has

een applied by many scholars in the field of sparse signal recov-

ry [47] . If a signal x is k -sparse, this algorithm can find solution to

q. (4) in k iterations. At the same time, Eq. (4) can be changed as

n unconstrained optimization problem in ( 10 ). The objective func-

ion in ( 10 ) undergoes a constraint from � 2 to � 1 . Therefore, when

decreases to 0, the solution set x ∗
λ

of the large λ and α converges

o the solution of ( 4 ). Furthermore, the solution path is a piecewise

onstant that is a function of λ. It only changes at the critical value

f λ. 

Making the objective function of ( 10 ) is F ( α), then 

 F ( α) = −D 

T ( y − Dα) + λ∂ ‖ 

α‖ 1 (13) 

ince the ‖ α‖ 1 of Eq. (13) is not globally differentiable. Therefore,

e need to redefine ‖ α‖ 1 of the sub-differential as follows: 

 ( α) = 

{
u ∈ R 

N 

∣∣∣∣u i = sgn ( αi ) , αi � = 0 

u i ∈ [ −1 , 1 ] , αi = 0 

}
(14) 

he homotopy algorithm through the iterative process of k step

ith an initial value α( 0 ) = 0 . During each iteration, and with a

ertain nonzero λ, furthermore, Eq. (15) can be acquired through

F ( α) = 0 : 

 ( α) = D 

T y − D 

T 

Dα = λu ( α) (15) 

ccording to Eq. (14) , we maintain the sparse support set in the

 th iteration. 

 ∈ 

{
i : 

∣∣c i 
( k ) ( α) 

∣∣ = λ
}

(16) 

hen, we calculate the update direction and gradually adjust the

on-zero coefficients of α( k ) . In addition, mathematical derivation

nd algorithm information can be found in [47,48] . We use the ef-

cient block-coordinate descent algorithm proposed in [49] , which

oes not require any learning rate tuning. For each x i each column,

.e., d j (block), of the dictionary D is sequentially updated by the

lock coordinate decent algorithm [49] : 

 i = 

1 

A j, j 

(
B j − DA j 

)
+ d j (17) 

 i = A i −1 + αi α
T 
i (18) 

 i = B i −1 + x i α
T 
i (19) 

Dictionary learning algorithm is of great significance for the

evelopment of the real-time system. Sparse coding with a fixed

ictionary is a linear least squares problem. Furthermore, we

ntroduce � 1 regularization that can be solved by the LARS al-

orithm, which is another derivative of LASSO [49,50] . In the

ecade research, Marial et al. have employed block coordinates to

all and restart [49] . This method does not require learning rate

djustment, which can avoid the difficulty of setting optimization

onstraints. Finally, learning dictionary D is obtained by alternating

bove mentioned sparse optimization and dictionary update steps

or each x i until D is convergent. In this work, we set the number

f iteration t as 100 to find the converged dictionary. Besides, we

onclude the dictionary learning with homotopy algorithm shown

n Table 2 . 

.4. Classification 

In Fig. 1 , we can understand that the various aspects of the clas-

ification scheme. After the EEG data is preprocessed by filtering,

tc, the learning dictionary is trained by randomly selected EEG

raining samples, and the dictionary training method is an online

earning method. We introduce the � regularization penalty factor
1 
onstraint, which can affect the sparsity of sparse coding and the

eneralization ability of model coding. 

The test sample y is sparsely coded in the learning dictionary,

nd the calculation of the sparse coefficient vector is realized by

he Lars algorithm [51] : 

∧ 
= arg min 

β∈ R k 

{ 

1 

2 

‖ 

y − Dβ‖ 

2 
2 + λ1 ‖ 

β‖ 1 

} 

(20) 

f which λ signifies a constant, 
∧ 
β = [ 

∧ 
β1 , 

∧ 
β2 , . . . , 

∧ 
βi ] , 

∧ 
βi is the rep-

esentation coefficient of the test sample on the i th sub-dictionary.

ext, we need to calculate the reconstruction error that the test

ampley represents on each sub-dictionary. In addition, we can de-

ermine the category to which the test sample belongs by recon-

tructing the error, and the test sample belongs to the category

ith the smallest reconstruction error. 

 i ( y ) = 

∥∥∥∥y − D i 

∧ 
βi 

∥∥∥∥
2 

2 

(21) 

here 
∧ 
βi is the representation coefficient of the test sample on the

 th sub-dictionary, and D i is the dictionary of the i th class. Finally,

he label which the test sample belongs to is discriminated based

n the reconstruction error. 

. Experimental procedure and dataset 

To evaluate the proposed method, we conduct seizure detection

xperiments on two publicly available EEG databases provided by

he Bonn University (2001) [26] and the open-source EEG database

rom CHB-MIT(http://phys ionet.org/cgi-bin/atm/ATM) 

The first EEG database provided by the Bonn University con-

ists of five groups (represented as Z, O, N, F, and S), each contains

00 single-channel EEG fragments with a duration of 23.6 s and

 sampling rate of 173.6 Hz. After visual examination of artifacts,

uch as muscle activity or eye movement, EEG fragments are se-

ected and cut out from the successive multichannel EEG records.

he dimension of the original data signal is 4096. The group Z and

roup O consist of segments from the surface EEG records taken

rom five healthy volunteers using the standard 10–20 electrode

eplacement protocol. The volunteers relax their eyes (Z) and close

yes (O) under the wakefulness. N, F and S are derived from the

reoperative diagnosis of EEG files. Fragments from epileptogenic

reas are recorded in group F, and those from contralateral hemi-

pheric hippocampal structures are recorded in the group N. Set N

nd F contain only activities measured during epileptic intervals,

nd set S contains the epileptic activity. The dataset Z includes

ignals from the normal people, and S contains epileptic seizures.
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EEG signals with the same 128 channel amplifier are recorded. The

data is digitalized at 12 bits resolution and 173.6 samples per sec-

ond. The bandpass filter is set to 0.5-3-60 Hz. The total number

of EEG signals is 30 0 (10 0 normal signals, 100 intermittent and

100 seizures). Each dataset has 4096 sampling points. Moreover, in

order to facilitate the requirements of following classification ta-

ble, we rename the groups Z, O, N, F and S to the sets A, B, C, D

and E. 

Another EEG database was provided by the CHB-MIT [27–29] is

publicly free and available on www.physionet.org . 23 Children

with epilepsy have been recorded by placing 23 electrodes on the

scalp of each subject. The scalp EEG dataset has been sampled at

256 Hz. The study included 17 females that ranged in age from 1.5

to 19 years and five males that ranged in age from 3 to 22 years.

The age and gender information of a child is unknown. Subjects

1 and 21 were from the same female patient with 1.5 year apart

and are considered as two extra patients in this paper. The start

and end times of seizures are clearly labeled according to expert

judgment, and the number and duration of seizures vary from

subject to subject. 

5. Result 

In the evaluation of epileptic detection systems, the assessment

is usually quantified by sensitivity, specificity, recognition accuracy
nd AUC which are defined as follows: 

ensitivity = 

T P 

T P + F N 

(22)

pecificity = 

T N 

T P + F N 

(23)

ecognition Accuracy = 

T N + T P 

T P + F N + T N + F P 
(24)

UC = 

∑ 

I ( P M 

, P N ) 

M ∗ N 

(25)

• Sensitivity (Sen): the number of true positives/the total num-

er of ictal EEG epochs labeled by the EEG specialists. True positive

epresents the ictal EEG identified by algorithm and experts. 

• Specificity (Spe): the number of true negatives/the total num-

er of interictal EEG epochs labeled by the EEG specialists. True

egative represents the interictal EEG identified by algorithm and

xperts. 

• Recognition accuracy (Acc): the number of correctly identified

pochs/the total number of epochs. 

• Are under curve (AUC): the predicted probability of the posi-

ive epochs is greater than the predicted probability of a negative

pochs. M represents a positive epochs and N represents a negative

pochs. 

In this section, we provide the classification results with the

onn university and CHB-MIT available databases as described in

https://www.physionet.org
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Table 3 

The Bonn dataset: demographic prediction performance comparison by three evaluation metrics. Sens%, Spec% and Acc% represent the sensitivity, specificity and recognition 

accuracy, respectively. 

Classification Dictionary size 

173 256 512 1024 2048 4096 

DLWH SRC DLWH SRC DLWH SRC DLWH SRC DLWH SRC DLWH SRC 

E–A Sens% 93 93 93 86 94 92 95 97 98 98 100 100 

Spec% 83 59 88 47 95 77 100 97 99 99 100 100 

Acc% 88 76 90.5 66.5 94.5 84.5 97.5 97 99.5 98.5 100 100 

AUC 0.9473 0.9056 0.9644 0.7813 0.987 0.947 0.9945 0.9904 0.9994 0.9999 1 1 

E–B Sens% 94 92 96 93 100 93 100 99 100 99 100 100 

Spec% 87 65 90 51 95 72 95 87 97 94 95 90 

Acc% 90.5 78.5 93 72 97.5 82.5 97.5 93 98.5 96.5 97.5 95 

AUC 0.9744 0.9249 0.9905 0.8714 0.9973 0.9574 0.9994 0.9965 0.9996 0.9989 1 1 

E–C Sens% 87 76 89 73 93 73 95 83 97 93 98 96 

Spec% 98 86 98 79 100 99 100 100 100 100 100 100 

Acc% 92.5 81 93.5 76 96.5 86 97.5 91.5 97.5 96.5 99 98 

AUC 0.9773 0.9234 0.9872 0.8345 0.9964 0.9771 0.9993 0.9965 0.9999 0.9998 0.9998 0.9996 

E–D Sens% 88 79 88 69 95 73 95 84 97 92 99 97 

Spec% 95 91 100 85 100 100 100 99 99 100 100 100 

Acc% 91.5 85 94 77 97.5 86.5 97.5 91.5 98 96 99.5 98.5 

AUC 0.9757 0.8569 0.9919 0.8569 0.9985 0.9862 0.9993 0.9954 0.9993 0.9994 0.9996 0.9997 

Average Sens% 90.5 85 91.5 80.25 95.5 82.75 96.25 90.75 98 95.5 99.25 98.25 

Spec% 90.75 75.25 94 65.5 97.5 87 98.75 95.75 98.75 98.25 98.75 97.5 

Acc% 90.625 80.125 92.75 72.875 96.5 84.875 97.5 93.25 98.375 96.75 99 97.875 

AUC 0.9739 0.9178 0.9820 0.836 0.9948 0.9669 0.9981 0.9947 0.9996 0.9994 0.9999 0.9999 

Table 4 

The CHB-MIT database, the results of different subjects recognition accuracy. 

Subject Dictionary size 

173 256 512 1024 2048 4096 

DLWH SRC DLWH SRC DLWH SRC DLWH SRC DLWH SRC DLWH SRC 

1 Acc% 84.5 86 88.5 84 91.5 72.5 94.5 96 80 98.5 94.5 85.5 

2 Acc% 95.5 93 95.5 93.5 97.5 84.5 97 87 97.5 92.5 98 94 

3 Acc% 88.5 88.5 87 89 92 73.5 94 72.5 95.5 72.5 94 86.5 

4 Acc% 92 91 93 91.5 94 70 98.5 83 100 81.5 99.5 82.5 

5 Acc% 76 83 73.5 80 83.5 70 92 77.5 96 85 95.5 93 

6 Acc% 83 83.5 89.5 82.5 92 84.5 95.5 89 96 89.5 96 93.5 

7 Acc% 91.91 91.5 94.5 93 96 81 98.5 82 99.5 84.5 98 91.5 

8 Acc% 68.5 71.5 78.5 75.5 90.5 74 97.5 75 99.5 82 98.5 91.5 

9 Acc% 96.5 71.5 97.5 94.5 98 86 96.5 92.5 99 97 99.5 95.5 

10 Acc% 78 77.5 81.5 83.5 84 78 92.5 81 97 76 97 82 

11 Acc% 83.5 81.5 83.5 81 92.5 96 95 68.5 93.5 62.5 91 57.5 

12 Acc% 72 69.5 79 74.5 89.5 61.5 91 62.5 91 70 93.5 54.5 

13 Acc% 74.5 75.5 76.5 75 86.5 50 87 54.5 89 49 89 46.5 

14 Acc% 81.5 81.5 86 87 89.5 56 89 60.5 90 62 92.5 60 

15 Acc% 87 89 91 88.5 91 56 93 52 92.5 60.5 94.5 54 

16 Acc% 79 79 83 74.5 86 55 86 47.5 87.5 56.5 91 61 

17 Acc% 76.5 79 77.5 73.5 82.5 65 82 61 91 62 95 58 

18 Acc% 90 91 93.5 84 94.5 68 92.5 62.5 95.5 59 98 65.5 

19 Acc% 86.5 88 88 81.5 91.5 68 92 62 92 64.5 96 69 

20 Acc% 81 76 82.5 79.5 90 55 90.5 64 91.5 57 91 56 

21 Acc% 86.5 84.5 86 85 87.5 61.5 93.5 59.5 92 61.5 89 54 

22 Acc% 88.5 86.5 89 84 92 66 92.5 65.5 92 64.5 94.5 70 

23 Acc% 88.5 89 94.5 90.5 98 77.5 98 82 99 91 99 89.5 

24 Acc% 83.5 79 85 77.5 90 72 93 77 95.5 81 97 93.5 

Average Acc% 83.75 83.75 82.79 83.46 90.83 70.06 92.98 70.35 91.61 72.56 95.06 74.35 
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ection 4 , which compare the results with SRC. The sensitivity,

pecificity, recognition accuracy, and AUC are calculated from the

esults of each fold. Then, the mean values of these statistical mea-

ures over the 10-folds are treated as the actual estimates of clas-

ification performance. 

All the experiments are executed in Matlab 2018a environment

unning in Inter core processor with 2.7 GHz. For the Boon EEG

ataset, as depicted in Fig. 4 (A), the green, yellow, and blue lines

epresent the original EEG signals of seizures, the inter-ictal, and

he health, respectively. We take a segment of each signal, a total

f 100 points, and the time point and amplitude as their respective

bscissa and ordinate. Furthermore, we can clearly know that the
mplitude of the health and inter-ictal are relatively stable, and the

pike is not easy to occur. However, the seizures signal is prone

o the spike phenomenon. Fig. 4 (B) shows 180 trail signals of the

pileptic and the non-epileptic. 

We draw one EEG signal from sets A, B, C, D and E, respectively.

or each EEG subset (A, B, C, D or E). In addition, we consider

he following four binary classification problems that use different

ombinations of these data sets in this paper. 

1. Classification of sets A and E: only A and E segments are used

nd they are classified into two classes: normal or seizure. 

2. Classification of sets B and E: only B and E segments are used

nd they are classified into two classes: normal or seizure. 
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Table 5 

The CHB-MIT database, the results of different subjects specificity. 

Subject Dictionary size 

173 256 512 1024 2048 4096 

DLWH SRC DLWH SRC DLWH SRC DLWH SRC DLWH SRC DLWH SRC 

1 Spec% 80 76 85 74 89 80 95 67 94 79 92 84 

2 Spec% 95 93 96 95 98 83 96 83 95 89 96 93 

3 Spec% 92 93 93 96 95 80 97 71 98 70 95 86 

4 Spec% 89 88 94 90 93 55 97 75 100 69 99 71 

5 Spec% 66 77 69 66 79 67 91 79 94 82 95 91 

6 Spec% 80 76 85 74 88 78 93 82 94 87 93 92 

7 Spec% 87 89 95 93 98 78 99 76 99 80 96 90 

8 Spec% 75 78 86 85 94 80 100 82 100 83 99 92 

9 Spec% 96 99 98 98 98 86 95 90 99 95 99 98 

10 Spec% 80 80 82 91 91 84 91 83 97 73 98 81 

11 Spec% 83 78 82 76 92 64 96 62 93 57 88 44 

12 Spec% 70 71 78 71 88 60 92 68 91 75 90 57 

13 Spec% 74 73 71 75 89 48 86 50 87 46 86 44 

14 Spec% 79 83 83 88 91 59 88 58 89 60 93 60 

15 Spec% 84 91 89 85 92 63 93 53 93 62 94 64 

16 Spec% 76 79 85 79 86 53 89 53 89 57 92 69 

17 Spec% 78 85 75 73 84 62 84 56 90 52 95 44 

18 Spec% 91 88 94 75 95 59 94 51 94 45 97 70 

19 Spec% 83 81 83 73 91 62 91 54 90 55 94 61 

20 Spec% 77 66 76 71 88 46 88 62 91 54 90 56 

21 Spec% 86 84 86 87 85 64 95 68 91 63 92 49 

22 Spec% 88 86 90 86 93 74 92 71 91 69 93 77 

23 Spec% 95 90 96 93 99 67 98 76 99 89 99 83 

24 Spec% 89 91 89 93 99 83 97 81 98 79 99 92 

Average Spec% 83.04 83.13 85.83 82.79 91.46 68.13 93.21 69.79 94 69.58 94.33 72.83 

Table 6 

CHB-MIT database, the results of different subjects sensitivity. 

Subject Dictionary size 

173 256 512 1024 2048 4096 

DLWH SRC DLWH SRC DLWH SRC DLWH SRC DLWH SRC DLWH SRC 

1 Sens% 89 96 92 94 94 65 94 73 98 81 97 87 

2 Sens% 96 93 95 92 97 86 98 91 100 96 100 95 

3 Sens% 85 84 81 82 89 67 91 74 93 75 93 87 

4 Sens% 95 94 92 93 95 85 100 91 100 94 100 94 

5 Sens% 86 89 78 94 88 73 93 76 98 88 96 95 

6 Sens% 86 91 94 91 96 91 98 96 98 92 99 95 

7 Sens% 91 94 94 93 94 84 98 88 100 89 100 93 

8 Sens% 62 65 71 66 87 68 95 68 99 81 98 91 

9 Sens% 97 92 97 91 98 86 98 95 99 99 100 93 

10 Sens% 76 75 81 76 77 72 94 9 97 79 96 83 

11 Sens% 84 85 83 86 93 74 94 75 94 68 94 71 

12 Sens% 74 68 80 78 91 63 90 57 91 65 87 52 

13 Sens% 75 78 82 75 84 52 88 59 91 52 92 49 

14 Sens% 84 80 89 86 88 53 90 63 91 64 92 60 

15 Sens% 90 87 93 92 90 49 93 51 92 59 95 44 

16 Sens% 82 79 81 70 86 57 83 42 86 56 90 53 

17 Sens% 75 73 80 74 81 68 80 66 92 72 95 72 

18 Sens% 89 94 93 93 94 77 91 74 97 73 99 61 

19 Sens% 90 95 93 93 92 74 93 70 94 74 98 77 

20 Sens% 95 86 89 88 92 64 93 66 92 61 92 56 

21 Sens% 87 85 86 83 90 59 92 51 93 60 86 59 

22 Sens% 89 87 88 82 91 58 93 60 93 60 96 63 

23 Sens% 82 88 93 88 97 88 98 88 99 93 99 96 

24 Sens% 78 67 81 62 81 61 89 73 93 83 95 95 

Average Sens% 84.88 84.38 86.92 84.25 90.21 69.75 92.75 71.92 95 75.58 95.38 75.88 

 

 

 

 

 

 

 

o  

m  

i

 

t  

n  

t  

a  

9  

t  
3. Classification of sets C and E: only C and E segments are used

and they are classified into two classes: normal or seizure. 

4. Classification of sets D and E: only D and E segments are

used and they are classified into two classes: normal or seizure. 

Besides, we performed seizure detection on the CHB-MIT EEG

database by recognition rate, sensitivity, and specificity, the AUC

evaluation indicators judges the performance of the proposed algo-

rithm, and the result has been shown in Tables 4–7 , respectively. 

There have been many studies on the identification of epilep-

tic EEG signals for this database in recent years. The utilization
f the same EEG dataset is necessary for a more precise perfor-

ance comparison between the proposed method and other exist-

ng methods. 

In Table 3 , we see that the sensitivity, specificity and recogni-

ion accuracy of DLWH are higher than SRC under different dictio-

ary size, which is consistent with our previous predictions. When

he dictionary size is taken to 4096, we can clearly see that the

verage sensitivity, specificity and recognition rate are both over

9%, which are significantly higher than SRC index. When the dic-

ionary size is taken to 173, the average sensitivity, specificity and
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Table 7 

CHB-MIT database, the results of different subjects AUC. 

Subject Dictionary size 

173 256 512 1024 2048 4096 

DLWH SRC DLWH SRC DLWH SRC DLWH SRC DLWH SRC DLWH SRC 

1 AUC 0.9276 0.9584 0.9688 0.9423 0.9815 0.819 0.9939 0.7805 0.9966 0.8815 0.9946 0.9151 

2 AUC 0.9919 0.9861 0.9949 0.9769 0.9948 0.9274 0.9979 0.9474 0.9989 0.964 0.9998 0.9819 

3 AUC 0.9494 0.9474 0.9613 0.9571 0.9816 0.7953 0.9902 0.7697 0.9953 0.804 0.9959 0.9498 

4 AUC 0.9726 0.9713 0.9749 0.9751 0.994 0.8508 1 0.9177 1 0.9338 1 0.9321 

5 AUC 0.8446 0.9011 0.852 0.9028 0.9445 0.7781 0.9903 0.8514 0.9937 0.9204 0.996 0.9755 

6 AUC 0.9191 0.9252 0.9724 0.9351 0.9878 0.9078 0.9969 0.9615 0.9959 0.9734 0.9973 0.9786 

7 AUC 0.974 0.977 0.9823 0.9776 0.9969 0.8963 0.9998 0.911 1 0.9502 1 0.9629 

8 AUC 0.8111 0.7968 0.8935 0.8616 0.9763 0.786 0.9946 0.8061 0.9995 0.8668 0.9992 0.9484 

9 AUC 0.9915 0.9915 0.9962 0.9777 0.998 0.9061 0.9988 0.9725 0.9999 0.9959 0.9999 0.9819 

10 AUC 0.8806 0.8776 0.9137 0.9322 0.9209 0.875 0.9802 0.8835 0.9984 0.8266 0.9983 0.9032 

11 AUC 0.9094 0.9002 0.9035 0.8948 0.9462 0.7829 0.953 0.8078 0.9488 0.739 0.9235 0.7061 

12 AUC 0.8295 0.7831 0.8662 0.7972 0.936 0.6768 0.9246 0.717 0.92 0.7645 0.9365 0.5878 

13 AUC 0.7669 0.8092 0.8152 0.8042 0.8958 0.5267 0.8682 0.5842 0.8758 0.5103 0.8795 0.4847 

14 AUC 0.8714 0.8583 0.9145 0.8902 0.8973 0.6287 0.8872 0.6637 0.9041 0.6801 0.9457 0.6395 

15 AUC 0.9194 0.9322 0.949 0.9327 0.9322 0.5613 0.9411 0.5675 0.9606 0.6104 0.971 0.5365 

16 AUC 0.8496 0.8433 0.8694 0.8181 0.8791 0.5341 0.8699 0.511 0.8818 0.5882 0.9 0.6116 

17 AUC 0.8371 0.8801 0.8477 0.8071 0.8816 0.7455 0.8816 0.7076 0.8924 0.92 0.996 0.6619 

18 AUC 0.9372 0.9457 0.9496 0.9311 0.9512 0.7948 0.9546 0.7494 0.9695 0.7192 0.9819 0.6588 

19 AUC 0.9246 0.9527 0.9328 0.9247 0.9429 0.762 0.9497 0.7499 0.9724 0.7778 0.9718 0.7925 

20 AUC 0.8608 0.8659 0.909 0.8917 0.8987 0.6116 0.9176 0.6847 0.9039 0.6476 0.8998 0.6493 

21 AUC 0.8734 0.9092 0.8844 0.9112 0.9227 0.6748 0.9423 0.6432 0.9174 0.6529 0.9169 0.5926 

22 AUC 0.9242 0.9289 0.9378 0.9208 0.948 0.7506 0.933 0.7489 0.9392 0.7362 0.9771 0.7885 

23 AUC 0.9693 0.9597 0.9851 0.9653 0.9947 0.9106 0.9962 0.9322 0.9966 0.9634 0.9988 0.9706 

24 AUC 0.9146 0.8944 0.9378 0.9013 0.9868 0.8375 0.9926 0.8196 0.9979 0.8554 0.9981 0.9744 

Average AUC 0.9021 0.9081 0.9289 0.9095 0.9496 0.7641 0.9569 0.7787 0.9619 0.795 0.9699 0.7993 
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ecognition rate of DLWH are 90.5%, 90.75%, 90.625%, respectively.

evertheless the SRC gets a bad effect. At the same time, in the

valuation metric of AUC, we can clearly note that when the dic-

ionray size is small (i.e. 173 and 256), the AUC of DLWH is more

bvious than that of SRC. When the Dictionary size is 4096, the

verage AUC is close to 0.99985. As we all know, when the value

f AUC is 1, it is a perfect classifier. 

Tables 4 –7 represent the recognition accuracy, specificity, sen-

itivity, AUC of the CHB-MIT 24 subjects and the statistical aver-

ge of all the results. Then, we could clearly see that the sen-

itivity, specificity, and recognition accuracy of DLWH are higher

han SRC in different dictionary size. When the dictionary size is

et to 4096, we can clearly see the average specificity, sensitivity,

ecognition accuracy and AUC are 94.33%, 95.38%, 95.06%, 0.9699%,

espectively, and the difference between DLWH and SRC. Besides,

hen the dictionary size is 173, the average specificity, sensitivity,

ecognition rate and AUC are 83.04%, 84.88%, 83.75% and 0.9021%

espectively, showing excellent performance. Later, we will discuss

he differential interpretation of the results of the EEG datasets at

he Bonn University and CHB-MIT. 

We explain the dictionary learning scheme in Section 3.3 , dic-

ionary size, i.e., the number of columns in the dictionary, which

epends on the number of classes and the feature dimension. 

Fig. 5 shows the classification results by the different dictio-

ary size, respectively. The subgraph Fig. 5 (A)–(D) represents four

lassification (E–A, E–B, E–C and E–D), and Fig. 5 (E) is the statis-

ical average of the four classification cases of Bonn University of

EG dataset. Fig. 5 (F) is the result of statistical average of CHB-MIT

EG dataset. Here, we compare classification accuracy for the dif-

erent dictionary size in SRC and DLWH, respectively. We note that

oo small number of atoms in the dictionary show poor classifi-

ation accuracy. Because if the number of atoms in dictionary is

oo small, new test feature cannot be represented will with sim-

lar features in the dictionary. Therefore, it resulted in low dis-

rimination power. Fig. 5 from 2056 to 4096 shows good classifica-

ion performance for both approach (SRC and DLWH). On the other

and, computation time is also increased with large dictionary

ize. 
. Discussion 

In this research, the sparse representation with the dictionary

earning is proposed for the seizure detection, and the optimization

lgorithm is employed to train the train sets to acquire a better

ictionary, which can represent the test sample well. Besides, we

mprove the generalization ability of the model and the sparsity of

parse representation by introducing � 1 regularization. In the pre-

rocessing part, the bandpass filter is applied to both seizure part

nd non-seizure background, which makes the data cleaner. 

The training signals of all classes can be directly used as the

ictionary for the sparse representation. Furthermore, the dictio-

ary learning has been proven to be essential for producing good

esults, which can process one element of the train signal. In this

aper, the residuals for each category are calculated and compared

y the dictionary learning and sparse coding which test signals. 

The dictionary learning method can achieve faster performance

han the traditional algorithm. To compare with the cost of our im-

roved sparse representation method, the time taken in the detec-

ion processing is calculated. The average difference in execution

ime is negligible with the same standard desktop computer with

.7 GHz core and 8 GB RAM running Matlab 2018a. We compare

he running time with the SRC algorithm. In consequence, it can

e found that the execution time of DLWH algorithm is 19.671 s,

hich is less than that of SRC algorithm, i.e., 465.8 s in the training

tate. Furthermore, there are obvious differences in their running

ime, which makes the system possibly adapt to develop the online

eizure detection system or the portable detection device. Apart

rom that, in the future work, we will focus on the ability of DLWH

or the seizure detection, which satisfies the clinic requirement. 

The Bonn University EEG database used in this research has

een applied in many researches for evaluating the seizure

etection algorithm. It is more desirable to compare the proposed

ethod with other existing work. The performance comparisons

etween the normal (Set A) and the ictal (Set E) EEG signals with

orrect classification rates are listed in Table 8 . The classification

f the normal (Set A) and ictal (Set E) EEG is easier than that of

he interictal (Set D) and ictal (Set E) EEG. Hence, the reported
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Fig. 5. Comparison of classification accuracy for different dictionary size. The subgraph Fig. 5 (A)–(D) represents four classification (E–A, E–B, E–C and E–D) of the Bonn 

university dataset, Fig. 5 (E) represents the average result of the bonn dataset, Fig. 5 (F) represents the average result of the CHB-MIT database. 
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results plotted in Table 8 are all quite high. However, the pro-

posed method has achieved much high accuracy, sensitivity and

specificity. Polat et al. employed the fast fourier transformation

for the feature extraction and decision tree classification with

set A and set E, which produced accuracy rates, sensitivity and

specificity of 98.72%, 99.40%, and 99.31%, respectively. Fu et al.

presented the HMS and SVM methods, which were used to extract

features for the classification of the epileptic EEG signals, yielding

accuracy of 99.85%. For set B and set E, the weighted visibility

graph combined with SVM is presented, with the 97.25% recog-

nition accuracy satisfactory. For both set C and set E, Siuly et al.

presented a clustering technique-based least square support vector

machine (CT-LS-SVM), which yielded the recognition rate, sensi-
ivity and specificity of 98.5%, 99.3%, and 97.7%, respectively. For

lass D and class E, alzami et al. employed the DWT and adaptive

ybrid feature selection within bagging with MLP approch, which

chieved good results. In this work, the proposed detection system

ave generated 99.5%, 99%, 100% results in accuracy, sensitivity,

nd specificity, respectively. Apart from that, we just list some of

hem, and a detailed description on the other seizure technique is

hown in Table 8 . For three classes of seizure detection, a number

f researchers have implemented different methods, which are

isted in Table 6 . In particular, Tawfik et al. extracted the valid

eatures by the weighted permutation entropy, and as the in-

ut to the SVM classifier, producing a recognition rate of 97.5%

66] . Meanwhile, we also compare and summarize the research
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Table 8 

Summaries on existing approaches to epilepsy detection using features extracted from EEG signals using the same dataset used in this study. 

Classes Author Features extracted method Accuracy (%) Sensitivity Specificity 

A–E Nigam [52] Nonlinear preprocessing filter, 99.6% – –

diagnostic artificial neural network 

Srinivasan [3] Time-frequency domain feature, 97.2% – –

0 recurrent neural network 

Polat [18] FFT-decision tree classifier 98.72% 99.4% 99.31% 

Subasi [23] Discrete wavelet transform, 95% 95% 94% 

mixture of expert model 

Guo [24] Discrete wavelet transform-relative 95.2% 98.17% 92.12% 

wavelet energy, MLP 

Wang [20] Wavelet transform and 99.45% – –

Shannon entropy, KNN 

Nicolaou [21] Permutation entropy, SVM 93.55% – –

Fu [19] Time-frequency image 99.13% – –

using HHT, SVM 

Fu [53] HMS analysis, SVM 99.85% – –

Our DLWH 100% 100% 100% 

B–E Supriya [54] Weighted visibility graph and SVM 97.25% – –

Our DLWH 97.5% 100% 95% 

C–E Samiee [55] Rational discrete short-time fourier 98.5% 99.3% 97.7% 

transform and MLP 

Siuly [56] Clustering technique-based LS-SVM 98.5% 99.3% 97.7% 

Our DLWH 99% 98% 100% 

D–E alzami [35] DWT and adaptive hybrid 97.33% 97.76% 97.49% 

Feature selection 

Siuly [58] Least Square Support 94% 88% 100% 

Vector Machine (LS-SVM) 

Samiee [55] Rational Discrete Short Time 94.90% 95.6% 94.1% 

Fourier Transform 

Kaya [57] One-dimensional local 95.50% 96% 95% 

pattern (1D-LBP) 

Siuly [56] Clustering technique-based least 93.60% 89.4% 97.80% 

square support vector machine 

Kumar [22] Discrete wavelet transform 93% 94% 92% 

analysis and approximate entropy 

Our DLWH 99.5% 99% 100% 

Table 9 

Performance comparison between the proposed method and other works for classifying three-class problem of the normal (Set A), Interictal (Set 

D) and ictal (Set E) EEG. 

Author Features extracted method Accuracy (%) 

Chua et al. [59] Higher order spectra and power spectral density 93.11% 

Ubeyli et al. [30] Wavelet transform + mixture of expert model 93.17% 

Orhan et al. [60] Discrete wavelet transform 96.7% 

Acharya et al. [61] Recurrence quantification analysis parameters + SVM 95.6% 

Song et al. [62] Sample entropy + extreme learning machine 95.67% 

Acharya et al. [63] Entropies + Higher order spectra+Higuchi fractal dimension+Hurst exponent]+fuzzy 99.7% 

Martis et al. [64] Intrinsic time-scale decomposition + [energy+fractal dimension+sample entropy] 95.67% 

Murugavel and Ramakrishnan [65] Wavelet transform based statistical features 96% 

Kaya et al. [57] 1D-LBP + BayesNet 95.67% 

Tawfik et al. [66] Weighted permutation entropy + SVM 97.5% 

Our research DLWH 97.6% 
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ethods and experimental results with other researches, which

re provided in Table 9 . Apart from that, Many researches have

sed the CHB-MIT EEG database for evaluating seizure detection

lgorithms. Fergus et al. proposed a system for detecting epilepsy

ith linear discriminant analysis (LDA), which achieved 86.26%,

7.58%, and 86.93% results in accuracy, sensitivity, and specificity,

espectively [67] . In particular, Ahammad et al. proposed a method

ased on wavelet features and certain features of statistical fea-

ures without wavelet decomposition, which was classified for

ormal and epileptic EEG signals using the linear classifier, the

verall accuracy rate reached 84.2% [69] . Furthermore, a new

ulti-channel EEG seizure detection method was presented based

n the dynamics of the trajectories in phase spacee by Zabihi [70] .

esides, in [71] , a new classification approach called collective

etwork of binary classifier (CNBC) was presented, which achieved

ood performance. Many researchers use different algorithms for

eizure detection, which is listed in Table 10 . 
In Section 5 , two EEG databases effectively evaluate our pro-

osed algorithm. The highest recognition rate and the average

ecognition rate of DLWH in the Boon university EEG database

re 100% and 99.99%,% respectively. Meanwhile, the high and aver-

ge recognition rates of another database CHB-MIT are 99.5% and

5.06%, respectively. Since the Boon university database is directly

btained from the intracranial brain, so the intracranial EEG has

he advantages of constant potential, high signal-to-noise ratio and

mall artifacts, which makes the EEG signal quality outstanding.

he CHB-MIT signal is collected from the scalp electrode, which

ontains more noise and may result in reduced feature quality.

ue to the spatial averaging effect of the dura and skull [72] , in-

racranial EEG also includes features not observed in the scalp EEG,

nd has a high signal-to-noise ratio and fewer artifacts. Besides,

he CHB-MIT is collected at the scalp electrode, which contains

ore noise interference, furthermore, the focal area recorded by
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Table 10 

Performance comparison of the CHB-MIT database seizure detection research and classification re- 

sults. 

Author Classifier Subjects Sens (%) Spec (%) Acc (%) 

Fergus et al. [67] LDA 23 88 88 –

Gill et al. [68] GMM 12 86.26 87.58 86.93 

Ahammad et al. [69] Linear classifier 24 – 98.5 84.2 

Zabihi et al. [70] LDA and Navie Bayesian 24 88.27 93.21 93.11 

Kiranyaz et al. [71] CNBC 24 93 89 –

Khan et al. [73] LDA 5 83.60 100 91.80 

Our DLWH 24 95.38 94.33 95.06 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

L  

g

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the brain electrode contains more redundant information, which

may result in the extraction of low quality features. 

By contrast, our research based on the sparse representation

classification of EEG signals gets the excellent performance, and

the � 1 -minimization for sparse coding takes less time than other

existing methods. Therefore, it is effective to avoid the problem of

the feature selection and improve the operation speed. Besides, it

will be expected to be applied to the clinic. 

In future work, we will consider the post-process procedure to

the detection system, such as wavelet filtering, the differential fil-

tering, Kalman filter and kernel trick mentioned [38] . For example,

Khan et al. introduced the collar technology to compensate for the

missed seizures and make seizures more accurate [73] . 

7. Conclusions 

In this paper, we have proposed a classification method for

epilepsy EEG signals with a dictionary learning based on the sparse

representation, rather than using the original training sample di-

rectly as a dictionary. First, we have employed the EEG training

sample set as the basis of sparse representation, and the dictio-

nary to obtain the sparse representation coefficient on the EEG by

homotopy algorithm. In this system, a test sample training set by

minimizing the � 1 -norm has been proposed. Finally, the EEG sam-

ple has been tested with a sparsely coded subject learning dic-

tionary. Then, the reconstruction errors of the seizures and non-

epileptic EEG training samples on the test samples are calculated

to determine the label of the test samples, which are used for mak-

ing the decision. Therefore, the classification method have avoids

some problems, such as the feature selection, and the information

carried by the EEG signal that is completely retained. Hence, its

fast speed makes sense for the real-time seizure detection. At the

same time, we have created the speed of operation, sensitivity and

specificity, as well as recognition accuracy improved to meet re-

quirements of automatic seizures detection. Lastly, the proposed

seizure detection system demonstrates the practical applications of

real-time function. 

Declaration of Competing Interest Statement 

None 

CRediT authorship contribution statement 

Hong Peng: Conceptualization, Writing - review & editing,

Writing - original draft. Cancheng Li: Conceptualization, Writing

- review & editing, Writing - original draft, Data curation, Formal

analysis. Jinlong Chao: Data curation, Formal analysis, Writing -

original draft. Tao Wang: Writing - review & editing, Writing -

original draft. Chengjian Zhao: Writing - review & editing, Writing

- original draft. Xiaoning Huo: Writing - review & editing, Writ-

ing - original draft. Bin Hu: Conceptualization, Writing - review &

editing, Writing - original draft. 
cknowledgments 

The author would like to express sincere appreciation to Huiyan

u at Lanzhou University for her valuable comments and the lin-

uistic modification. 

eferences 

[1] J. Jin , R. Chen , X. Zheng , Post-epilepsy stroke: a review, Expert Rev. Neurother.

16 (3) (2016) 341–349 . 
[2] U.R. Acharya , S.V. Sree , G. Swapna , R.J. Martis , J.S. Suri , Automated EEG analysis

of epilepsy: a review, Knowl. Based Syst. 45 (2013) 147–165 . 
[3] A. Saastamoinen , T. PietilA , A. Varri , M. Lehtokangas , J. Saarinen , Waveform de-

tection with RBF network-application to automated EEG analysis, Neurocom-
puting 20 (1998) 1–13 . 

[4] P.D. Watson , K.M. Horecka , R. Ratnam , N.J. Cohen , A phase-locked loop epilepsy
network emulator, Neurocomputing 173 (2016) 1245–1249 . 

[5] E. Pippa , E.I. Zacharaki , I. Mporas , V. Tsirka , M.P. Richardson , M. Koutroumani-

dis , V. Megalooikonomou , Improving classification of epileptic and non-epilep-
tic EEG events by feature selection, Neurocomputing 171 (2016) 576–585 . 

[6] M. Parvez , M. Paul , Epileptic seizure detection by analyzing EEG signals using
different transformation techniques, Neurocomputing 145 (2014) 190–200 . 

[7] K. Zeng , J. Yan , Y. Wang , A. Sik , G. Ouyang , X. Li , Automatic detection of
absence seizures with compressive sensing EEG, Neurocomputing 171 (2016)

497–502 . 

[8] B. Hu , X.W. Li , S.T. Sun , M. Ratcliffe , Attention recognition in EEG-based af-
fective learning research using CFS+KNN algorithm, IEEE/ACM Trans. Comput.

Biol. Bioinf. 15 (1) (2016) 38–45 . 
[9] X. Li , D.W. Song , P. Zhang , Y.Z. Zhang , Y.H. Hou , B. Hu , Exploring EEG feature

in cross-subject emotiion recognition, Front. Neurosci. 12 (162) (2018) . 
[10] E.H. Reynolds , The prevention of chronic epilepsy, Epilepsia 29 (S1) (1998)

S25–S28 . 

[11] Z. Zheng , G.Y. Liu , Z.J. Yao , W.H. Zheng , Y.W. Xie , T. Hu , Y. Zhao , Y. Yu , Y. Zou ,
J. Shi , J. Yang , T.C. Wang , J. Zhang , H. B , Changes in dynamics within and be-

tween resting-state subnetworks in juvenile myoclonic epilepsy occur at mul-
tiple frequency bands, Front. Neurol. 9 (2018) . 

[12] R. Fisher , W. Boas , W. Blume , C. Elger , P. Genton , P. Lee , J. Engle , Epileptic
seizures and epilepsy: definitions proposed by the international league against

epilepsy (ILAE) and the international bureau for epilepsy (IBE), Epilepsia 46 (4)

(2005) 470–472 . 
[13] R.A . Ramadan , A .V. Vasilakos , Brain computer interface: control signals review,

Neurocomputing 223 (2017) 26–44 . 
[14] N. Kannathal , L.C. Min , U.R. Acharya , P.K. Sadasivan , Entropies for detection of

epilepsy in EEG, Comput. Methods Progr. Biomed. 80 (2005) 187–194 . 
[15] J. Gotman , Automatic recognition of epileptic seizures in the EEG. electroen-

cephalogr, Clin. Neurophysiol. 83 (1982) 271–280 . 

[16] L. Guo , R. Daniel , J. Dorado , C.R. Munteanu , A. Pazos , Automatic feature extrac-
tion using genetic programming: an application to epileptic EEG classification,

Expert Syst. Appl. 38 (8) (2011) 10425–10436 . 
[17] L. Guo , D. Rivero , J. Dorado , J.R. Rabunal , A. Pazos , Automatic epileptic seizure

detection in EEGs based on line length feature and artificial neural networks,
J. Neurosci. Methods 191 (1) (2010) 101–109 . 

[18] K. Polat , S. Gnes , Classification of epileptiform EEG using a hybrid system

based on decision tree classifier and fast fourier transform, Appl. Math Com-
put. 187 (2) (2007) 1017–1026 . 

[19] K. Fu , J. Qu , Y. Chai , Y. Dong , Classification of seizure based on the time-fre-
quency image of EEG signals using HHT and SVM, Biomed. Signal Process. Con-

trol 13 (2014) 15–22 . 
[20] D. Wang , D. Miao , C. Xie , Best basis-based wavelet packet entropy feature ex-

traction and hierarchical EEG classification for epileptic detection, Expert Syst.
Appl. 38 (11) (2011) 14314–14320 . 

[21] N. Nicolaou , J. Georgio , Detection of epileptic electroencephalogram based on

permutation entropy and support vector machines, Expert Syst. Appl. 39 (1)
(2012) 202–209 . 

[22] Y. Kumar , M. Dewal , R. Anand , Epileptic seizures detection in EEG using
DWT-based apen and artificial neural network, Signal Image Video Process. 8

(7) (2014) 1323–1334 . 

http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0001
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0001
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0001
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0001
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0002
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0002
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0002
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0002
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0002
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0002
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0003
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0003
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0003
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0003
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0003
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0003
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0004
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0004
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0004
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0004
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0004
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0005
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0005
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0005
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0005
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0005
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0005
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0005
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0005
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0006
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0006
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0006
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0008
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0008
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0008
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0008
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0008
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0010
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0010
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0013
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0013
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0013
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0014
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0014
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0014
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0014
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0014
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0015
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0015
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0016
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0016
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0016
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0016
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0016
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0016
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0017
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0017
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0017
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0017
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0017
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0017
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0019
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0019
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0019
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0020
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0020
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0020
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0020
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0020
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0021
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0021
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0021
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0021
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0022
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0022
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0022
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0023
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0023
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0023
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0023


H. Peng, C. Li and J. Chao et al. / Neurocomputing 424 (2021) 179–192 191 

[  

 

 

 

[  

 

[  

 

 

 

[  

 

[  

 

 

[  

 

[  

 

 

 

[  

 

 

[  

 

 

 

[  

 

[  

 

[  

 

 

[  

 

[  

[  

[  

[  

 

[  

[  

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

 

 

[  

 

[  

 

 

[  

 

 

 

[  

 

[  

 

[  

 

[  

[  

 

 

[  

 

[  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

 

 

 

 

 

 

 

 

23] A. Subasi , EEG Signal classification using wavelet feature extraction and a mix-
ture of expert model, Expert Syst. Appl. 32 (4) (2007) 1084–1093 . 

[24] L. Guo , D. Rivero , J. Seoane , A. Pazos , Classification of EEG signals using rel-
ative wavelet energy and artificial neural networks, in: Proceedings of the

First ACM/SIGEVO, Summit on Genetic and Evolutionary Computation, 2010,
pp. 1101–1109 . 

25] A. Farrikh , J. Tang , Z. Yu , S. Wu , C. Chen , J. You , J. Zhang , Adaptive hybrid fea-
ture selection-based classifier ensemble for epileptic seizure classification, IEEE

Access 3 (2018) 29132–29145 . 

26] R. Andrzejak , K. Lehnertz , F. Mormann , Indications of nonlinear determinis-
tic and finite-dimensional structures in time series of brain electrical activity:

dependence on recording region and brain state, Phys. Rev. E 64 (6) (2001)
061907 . 

[27] A. Shoeb , H. Edwards , J. Connolly , B. Bourgeois , S.T. Treves , J. Guttag , Patien-
t-specific seizure onset detection, Epilepsy Behavior 5 (4) (2004) 4 83–4 98 . 

28] A.H. Shoeb , Application of machine learning to epileptic seizure onset detec-

tion and treatment, Massachusetts Institute of Technology, Cambridge, MA,
USA, 2009 ph. d. dissertation . 

29] A .L. Goldberger , L.A . Amaral , L. Glass , J.M. Hausdorff, P.C. Ivanov , R.G. Mark ,
J.E. Mietus , G.B. Moody , C.K. Peng , H.E. Stanley , Physiobank, physiotoolkit, and

physionet: components of a new research resource for complex physiologic
signals, Circulation 101 (23) (20 0 0) . e215–e20 

30] E. Beyli , Wavelet/mixture of experts network structure for EEG signals classifi-

cation, Expert Syst. Appl. 34 (3) (2008) 1954–1962 . 
[31] S. Altunay , Z. Telatar , O. Erogul , Epileptic EEG detection using the linear pre-

diction error energy, Expert Syst. Appl. 37 (8) (2010) 5661–5665 . 
32] Siuly , Y. Li , P. Wen , Clustering technique-based least square support vector ma-

chine for EEG signal classification, Comput. Method Progr. Biomed. 104 (3)
(2011) 358–372 . 

[33] S. Chandaka , A. Chatterjee , S. Munshi , Cross-correlation aided support vector

machine classifier for classification of EEG signals, Expert Syst. Appl. 36 (2)
(2009) 1329–1336 . 

34] E.D. beyli , Least squares support vector machine employing model-based
methods coefficients for analysis of EEG signals, Expert Syst. Appl. 37 (1)

(2010) 233–239 . 
[35] E. Beyli , Analysis of EEG signals by combining eigenvector methods and multi-

class support vector machines, Comput. Biol. Med. 38 (1) (2008) 14–22 . 

36] N. Liang , P. Saratchandran , G. Huang , N. Sundararajan , Classification of mental
tasks from EEG signals using extreme learning mechine, Int. J. Neural Syst 16

(1) (2006) 29–38 . 
[37] U.R. Acharya , F. Molinari , S.V. Sree , S. Chattopadhyay , Automated diagnosis of

epileptic EEG using entropies, Biomed. Signal Process. Control 7 (4) (2012)
401–408 . 

38] J. Li , W. Zhou , S. Yuan , Y. Zhang , C. Li , Q. Wu , An improved sparse representa-

tion over learned dictionary method for seizure detection, Int. J. Neural Syst.
26 (1) (2015) 1550035 . 

39] M.Z. Ahmad , A.M. Kamboh , S. Saleem , A .A . Khan , Mallats scattering transform
based anomaly sensing for detection of seizures in scalp EEG, IEEE Access 5

(2017) 16919–16929 . 
40] S. Khanmohammadi , C. Chou , Adaptive seizure onset detection framework us-

ing a hybrid PCA-CSP approach, IEEE J. Biomed. Health Inf. 22 (1) (2018)
154–160 . 

[41] S. Mallat , Z. Zhang , Matching pursuits with time-frequency dictionaries, IEEE

Trans. Signal Process 41 (12) (1993) 3397–3415 . 
42] M. Aharon , M. Elad , A. Bruckstein , K-SVD: An algorithm for designing overcom-

plete dictionaries for sparse representation, IEEE Trans. Signal Process 54 (11)
(2006) 4311–4322 . 

43] J. Wright , A. Yang , A. Ganesh , S. Sastry , Y. Ma , Robust face recognition via
sparse representation, IEEE Trans. Pattern Anal. 31 (2) (2008) 210–222 . 

44] E. Candes , T. Tao , Near-optimal signal recovery from random projections: uni-

versal encoding strategies? IEEE Trans. Inf. Theory 52 (12) (2006) 5406–5425 . 
45] J. Mairal , F. Bach , J. Ponce , G. Sapiro , Z. Andrew , Supervised dictionary learning,

Adv. Neural Inf. Process. Syst. 21 (2008) 1033–1040 . 
46] J. Mairal , F. Bach , J. Ponce , G. Sapiro , Online learning for matrix factorization

and sparse coding, J. Mach. Learn. Res. 11 (2010) 19–60 . 
[47] M.S. Asif , J. Romberg , L1 homotopy:, A matlab toolbox for homotopy algo-

rithms in l1 norm minimization problems (2013) . 12–1 

48] D. Donoho , Y. Tsaig , Fast solution of l1-norm minimization problems when the
solution may be sparse, IEEE Trans. Inf. Theory 54 (11) (2008) 4789–4812 . 

49] J. Mairal , F. Bach , J. Ponce , G. Sapiro , Online learning for matrix factorization
and sparse coding, J. Mach. Learn. Res 11 (2010) 19–60 . 

50] S.G. Mallat , A theory for multiresolution signal decomposition: the wavelet
representation, IEEE Trans. Pattern Anal. 11 (7) (1989) 674–693 . 

[51] H. Lee , A. Battle , R. Raina , A.Y. Ng , Efficient sparse coding algorithms, in: Pro-

ceedings of Neural Information Processing Systems, 2007, pp. 801–808 . 
52] Y. Song , P. Lio , A new approach for epileptic seizure detection: sample entropy

based feature extraction and extreme learning machine, J. Biomed. Sci. Eng. 3
(6) (2010) 556–567 . 

53] K. Fu , J. Qu , Y. Chai , T. Zou , Hilbert marginal spectrum analysis for automatic
seizure detection in EEG signals, Biomed. Signal Process. Control 18 (2015)

179–185 . 
54] S. Supriya , S. Siuly , H. Wang , J. Cao , Y. Zhang , Weighted visibility graph with
complex network features in the detection of epilepsy, IEEE Access 4 (2016)

6554–6566 . 
55] K. Samiee , P. Kovacs , M. Gabbouj , Epileptic seizure classification of EEG

time-series using rational discrete short-time fourier transform, IEEE Trans.
Biomed. Eng. 62 (2) (2014) 541–552 . 

56] Siuly , Y. Li , P. Wen , Clustering technique-based least square support vector ma-
chine for EEG signal classification, Comput. Methods Progr. Biomed. 104 (3)

(2011) 358–372 . 

[57] Y. Kaya , M. Uyar , R. Tekin , S. Yildirim , 1D-local binary pattern based feature
extraction for classification of epileptic EEG signals, Appl. Math. Comput. 243

(2014) 209–219 . 
58] N. Siuly , Y. Li , P. Wen , EEG Signal classification based on simple random sam-

pling technique with least square support vector machine, Int. J. Biomed. Eng.
Technol. 7 (4) (2011) 1752–6426 . 

59] K. Chua , V. Chandran , R. Acharya , C.M. Lim , Automatic identification of epilepsy

by HOS and power spectrum parameters using EEG signals: A comparative
study, in: Proceedings of the Thirtieth Annual International Engineering in

Medicine Biology Society Conference, 2011, pp. 3824–C3827 . 
60] U. Orhan , M. Hekim , M. Ozer , EEG Signals classification using the k-means

clustering and a multilayer perceptron neural network model, Expert sys. appl.
38 (10) (2011) 13475–13481 . 

[61] U.R. Acharya , S.V. Sree , S. Chattopadhyay , W. Yu , P. Ang , Application of recur-

rence quantification analysis for the automated identification of epileptic EEG
signals, Int. J. Neural Syst. 21 (3) (2011) 199–211 . 

62] Y. Song , J. Crowcroft , J. Zhang , Automatic epileptic seizure detection in EEGs
based on optimized sample entropy and extreme learning machine, J. Neurosci.

Methods 210 (2) (2012) 132–146 . 
63] U. Acharya , S. Sree , P. Ang , Application of non-linear and wavelet based fea-

tures for the automated identification of epileptic EEG signals, Int. J. Neural

Syst. 22 (2) (2012) 125002 . 
64] R. Martis , U. Acharya , J. Tan , A. Petznick , L. Tong , C. Chua , E. Ng , Application of

intrinsic time-scale decomposition (ITD) to EEG signals for automated seizure
prediction, Int. J. Neural Syst. 23 (5) (2013) 1350023 . 

65] A. Murugavel , S. Ramakrishnan , An optimized extreme learning machine for
epileptic seizure detection, Int. J. Comput. Sci. 41 (4) (2014) 212–221 . 

66] N.S. Tawfik , S. Youssef , M. Kholief , A hybrid automated detection of epileptic

seizures in EEG records, Comput. Electr. Eng. 53 (2016) 177–190 . 
[67] D. Fergus , A.J. Hussain , D. Al-Jumeily , An advanced machine learning approach

to generalised epileptic seizure detection, Intell. Comput. Bioinf., LNCS (2014)
112–118 . 

68] A .F. Gill , S.A . Fatima , M.U. Akram , S.G. Khawaja , S.E. Awan , Analysis of EEG sig-
nals for detection of epileptic seizure using hybrid feature set, in: Theory and

Applications of Applied Electromagnetics, Springer, 2015, pp. 49–57 . 

69] N. Ahammad , T. Fathima , P. Joseph , Detection of epileptic seizure event and
oneset using EEG, BioMed Res. Int. 2014 (2014) 1–7 . 

[70] M. Zabihi , S. Kiranyaz , A .B. Rad , A .K. Katsaggelos , M. Gabbouj , T. Ince , Analy-
sis of high-dimensional phase space via poincare section for patient-specific

seizure detection, IEEE trans, Neural Syst. Rehabil. Eng. 24 (3) (2016) 386–398 .
[71] S. Kiranyaz , T. Ince , M. Gabbouj , D. Ince , Automated patient-specific classifica-

tion of long-term electroencephalography, J. Biomed. Inf. 49 (2014) 16–31 . 
[72] A. Shoeb , J. Guttag , Application of machine learning to epileptic seizure onset

detection, in: Proceedings of the ICML, 2010 . 

[73] Y.U. Khan , R. N , O. Farooq , Automated seizure detection in scalp EEG using
multiple wavelet scales, in: Proceedings of the International Conference on Sig-

nal Processing, Computing and Control, 2012, pp. 1–5 . 

Hong Peng received the Ph.D. degree from Lanzhou Uni-

versity, Lanzhou, China. From 2010 to 2011, he was as
a Visiting Scholar with the Institute of Computer Sys-

tem, ETH Zurich, Switzerland. He is currently an Asso-

ciate Professor with the School of Information Science
and Engineering, Lanzhou University. He is in charge of

three projects from National Natural Science Foundation
of China, Central College Foundation Project of Lanzhou

University and Youth CrossProject of Lanzhou University.
He has authored or co-authored over 30 papers in peer-

reviewed journals, conferences, and book chapters. He

is involved in the work of biosensors, biological signal
processing, and emotional characteristics analysis. His re-

earch areas include bioinformation processing and ubiquitous affective computing.

Cancheng Li was born in Guangdong, China. He obtained

a bachelors degree in 2017 and is currently pursuing
a masters degree at Lanzhou University (Universal Per-

ception and Intelligent Systems Laboratory), China. He is

also a Guest Student with the Shenzhen Institutes of Ad-
vanced Technology, Chinese Academy of Sciences, Shen-

zhen, China. He has been a reviewer of the IEEE ACCESS
journal since 2018. His research interests are bioelectrical

signal processing and pattern recognition. 

http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0024
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0024
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0025
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0025
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0025
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0025
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0025
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0026
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0026
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0026
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0026
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0026
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0026
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0026
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0026
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0027
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0027
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0027
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0027
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0028
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0028
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0028
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0028
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0028
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0028
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0028
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0029
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0029
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0031
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0031
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0032
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0032
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0032
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0032
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0034
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0034
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0034
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0034
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0036
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0036
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0037
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0037
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0037
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0037
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0037
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0038
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0038
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0038
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0038
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0038
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0039
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0039
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0039
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0039
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0039
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0039
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0039
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0040
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0040
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0040
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0040
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0040
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0041
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0041
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0041
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0042
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0042
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0042
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0043
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0043
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0043
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0043
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0044
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0044
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0044
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0044
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0044
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0044
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0045
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0045
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0045
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0046
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0046
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0046
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0046
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0046
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0046
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0047
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0047
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0047
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0047
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0047
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0048
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0048
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0048
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0048
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0049
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0049
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0049
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0050
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0050
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0050
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0050
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0050
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0051
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0051
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0052
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0052
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0052
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0052
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0052
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0053
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0053
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0053
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0054
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0054
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0054
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0054
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0054
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0055
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0055
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0055
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0055
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0055
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0055
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0056
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0056
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0056
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0056
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0057
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0057
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0057
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0057
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0058
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0058
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0058
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0058
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0058
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0059
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0059
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0059
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0059
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0060
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0060
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0060
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0060
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0060
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0061
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0061
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0061
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0061
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0062
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0062
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0062
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0062
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0062
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0062
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0063
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0063
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0063
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0063
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0064
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0064
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0064
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0064
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0065
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0065
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0065
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0065
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0065
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0065
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0065
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0065
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0066
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0066
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0066
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0067
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0067
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0067
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0067
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0068
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0068
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0068
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0068
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0069
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0069
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0069
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0069
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0069
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0069
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0070
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0070
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0070
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0070
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0071
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0071
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0071
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0071
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0071
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0071
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0071
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0072
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0072
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0072
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0072
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0072
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0073
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0073
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0073
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0074
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0074
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0074
http://refhub.elsevier.com/S0925-2312(19)31711-4/sbref0074


192 H. Peng, C. Li and J. Chao et al. / Neurocomputing 424 (2021) 179–192 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(  

T  

g  

t  

E  

C  

p  

m

Jinlong Chao received the B.E. degree from Gansu agri-

cultural university, Gansu, China, in 2015. He is currently
pursuing the Ph.D. degree in computer science and tech-

nology at School of Information Science and Engineering,

Lanzhou University, Lanzhou, China. His main research in-
terests include EEG, fNIRS and bioelectrical signal pro-

cessing. 

Tao Wang received the bachelors degree in control
engineering in 2018 from Zhengzhou University, China.

He is currently pursuing a masters degree in information

science with the School of Information Science and
Engineering, Lanzhou University, China. He is also a Guest

Student with the Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen,

China. His research focuses on affective com puting,
brain–computer interface, machine learning, and pattern

recognition. 

Chengjian Zhao received the B.E. degree from Chongqing
University, Chongqing, China, in 2016. He is currently pur-

suing the M.E. degree in Communication and information

system at School of Information Science and Engineering,
Lanzhou University, Lanzhou, China. His main research in-

terests include pattern recognition, neural networks, in-
telligent information processing, artificial intelligence and

bioelectrical signal processing. 
Xiaoning Huo is a chief physician and vice-president at

the third people’s hospital of Lanzhou City. She received a
master degree from Gansu University of Chinese Medicine

in 2008. Her research interests focus on drug treatment

and psychotherapy of mental illness. 

Bin Hu is currently a Professor and the Dean of the

School of Information Science and Engineering, Lanzhou
University, Lanzhou, China, an Adjunct Professor with Ts-

inghua University, Beijing, China, and a Guest Professor
with ETH Zrich, Zrich, Switzerland. He has authored or

co-authored over 200 papers in peer-reviewed journals,

conferences, and book chapters, including Science (Sup-
plementary), the Journal of Alzheimers Disease, the IEEE

Transactions, the IEEE Intelligent Systems, AAAI, BIBM,
EMBS, CIKM, and ACM SIGIR. He is an IET Fellow. He is

the Co-Chair of the IEEE SMC TC on Cognitive Computing,
a Member at Large of the ACM China, and the Vice Pres-

ident of the International Society for Social Neuroscience
China Committee). His work has been funded as a PI by the Ministry of Science and

echnology, the National Science Foundation China, the European Framework Pro-

ramme 7, EPSRC, and HEFCE, U.K. He has served as a Guest Editor of Science for
he special issue on Advances in Computational Psychophysiology and an Associate

ditor of the IEEE Transactions on Affective Computing, the IEEE Transactions on
omputational Social Systems, Brain Informatics, IET Communications, Cluster Com-

uting, Wireless Communications and Mobile Computing, and Security and Com-
unication Networks. 


	A novel automatic classification detection for epileptic seizure based on dictionary learning and sparse representation
	1 Introduction
	2 Related work
	3 Mathematica methods
	3.1 Preprocessing
	3.2 Sparse representation by minimization
	3.3 Dictionary learning with homotopy (DLWH)
	3.4 Classification

	4 Experimental procedure and dataset
	5 Result
	6 Discussion
	7 Conclusions
	Declaration of Competing Interest Statement
	CRediT authorship contribution statement
	Acknowledgments
	References


