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Abstract: Affective computing is important for making computers smarter. When emotion
can be quantified, machines can understand it. This study aims to apply affective computing
to mental disorders, and to classify healthy people and mentally illnesses. For this purpose,
85 subjects, including major depressive disorder patients, schizophrenia patients, and health
control people were recruited to participate in resting state functional near infrared spectroscopy
(fNIRS) experiment. We measured the changes in oxygenated blood concentration in the
prefrontal cortex (PFC). We then used three types of correlation analysis methods to construct
the functional connectivity matrices: Pearson correlation analysis (CORR), amplitude squared
coherence coefficient (COH), and phase locking value (PLV). We performed the small-world
model and centrality analysis based on these matrices. The results demonstrated the existence of
a small-world model in both patients and healthy people’s brain networks. Furthermore, features
such as the characteristic path length and betweenness centrality extracted from the functional
connectivity matrix are helpful for classifying patients and healthy people, thus providing a
method for detecting and identifying mental disorders.
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1. INTRODUCTION

Affective computing aims to improve intelligence in com-
puters by giving them the ability to recognize, under-
stand, and express human emotions. It is an interdisci-
plinary field, spanning computer science, psychology, and
cognitive science (Tao and Tan, 2005). Relevant studies
usually extract feature patterns using techniques such as
electroencephalogram (EEG) and electromyogram (EMG)
for emotion recognition from physiological signals (Shen
and Hu, 2019). Mental disorder may affect the brain under
the influence of various biological, psychological, and social
environmental factors, resulting in emotional, behavioral,
and other mental activities, most of which are accom-
panied by either brain structure or functional lesions.
Therefore, this study will apply affective computing to
analyze the resting state brain network of patients with
major depression (MDD) and schizophrenia (SCZ), and
quantify their brain activity. Note that the comparison
of the brain network with those of healthy people helps
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identify differences and assist in the medical diagnosis of
mental disorders.

In this study, we selected functional near infrared spec-
troscopy (fNIRS) for the data collection from the pre-
frontal cortex (PFC) region. fNIRS is easy to operate,
inexpensive, non-intrusive, and portable (Boas et al., 2004;
Piper et al., 2014). The near infrared photons are weakly
absorbed by biological tissues, and they can scatter across
the brain surface (Villringer and Chance, 1997). Further-
more, during data acquisition, fNIRS is applicable to both
clinical and laboratory studies, because the optical array
does not harm for infants and children’s brain. We selected
PFC because many previous studies have demonstrated
that PFC plays an important role in various high-level
cognitive functions, such as executive functions (Miller and
Cohen, 2001), decision-making (Wallis, 2007), reasoning
and planning , social cognitive and moral judgment(Forbes
and Grafman, 2010). It is possible to identify useful fea-
tures for affective computing in this field.

Many studies examined resting state functional brain
connectivity, using different experimental methods (Wang
et al., 2018; Cai et al., 2018). Moreover, functional brain
connectivity can be demonstrated by channel correlations.
For example, pearson correlation analysis (CORR) gives
the magnitude of temporal correlations, which may also
occur between anatomically disjointed regions (Rubinov
and Sporns, 2010). Beyond that, the correlation can be

An Application of Affective Computing on
Mental Disorders: A Resting State fNIRS

Study ⋆

Chunyun Wu, Jieqiong Sun, Tao Wang, Chengjian Zhao,
Shuzhen Zheng, Chang Lei, Hong Peng *

Gansu Provincial Key Laboratory of Wearable Computing, School of
Information Science and Engineering, Lanzhou University, Lanzhou
730000, China (e-mail: {wuchy18, sunjq18, wangtao2018, zhaochj18,
zhengshzh19, leich19, pengh}@lzu.edu.cn). * Corresponding author

Abstract: Affective computing is important for making computers smarter. When emotion
can be quantified, machines can understand it. This study aims to apply affective computing
to mental disorders, and to classify healthy people and mentally illnesses. For this purpose,
85 subjects, including major depressive disorder patients, schizophrenia patients, and health
control people were recruited to participate in resting state functional near infrared spectroscopy
(fNIRS) experiment. We measured the changes in oxygenated blood concentration in the
prefrontal cortex (PFC). We then used three types of correlation analysis methods to construct
the functional connectivity matrices: Pearson correlation analysis (CORR), amplitude squared
coherence coefficient (COH), and phase locking value (PLV). We performed the small-world
model and centrality analysis based on these matrices. The results demonstrated the existence of
a small-world model in both patients and healthy people’s brain networks. Furthermore, features
such as the characteristic path length and betweenness centrality extracted from the functional
connectivity matrix are helpful for classifying patients and healthy people, thus providing a
method for detecting and identifying mental disorders.

Keywords: Affective Computing, fNIRS, Brain Network, Mental Disorder

1. INTRODUCTION

Affective computing aims to improve intelligence in com-
puters by giving them the ability to recognize, under-
stand, and express human emotions. It is an interdisci-
plinary field, spanning computer science, psychology, and
cognitive science (Tao and Tan, 2005). Relevant studies
usually extract feature patterns using techniques such as
electroencephalogram (EEG) and electromyogram (EMG)
for emotion recognition from physiological signals (Shen
and Hu, 2019). Mental disorder may affect the brain under
the influence of various biological, psychological, and social
environmental factors, resulting in emotional, behavioral,
and other mental activities, most of which are accom-
panied by either brain structure or functional lesions.
Therefore, this study will apply affective computing to
analyze the resting state brain network of patients with
major depression (MDD) and schizophrenia (SCZ), and
quantify their brain activity. Note that the comparison
of the brain network with those of healthy people helps

⋆ This work was supported in part by the National Key Research
and Development Program of China (Grant No.2019YFA0706200),
in part by the National Natural Science Foundation of China
(Grant No.61632014, No.61627808, No.61210010), in part by the
National Basic Research Program of China (973 Program, Grant
No.2014CB744600), in part by the Program of Beijing Municipal
Science & Technology Commission (Grant No.Z171100000117005),
and in part by the Fundamental Research Funds for the Central U-
niversities (lzujbky-2020-66, lzujbky-2020-kb25, lzujbky-2020-kb08).

identify differences and assist in the medical diagnosis of
mental disorders.

In this study, we selected functional near infrared spec-
troscopy (fNIRS) for the data collection from the pre-
frontal cortex (PFC) region. fNIRS is easy to operate,
inexpensive, non-intrusive, and portable (Boas et al., 2004;
Piper et al., 2014). The near infrared photons are weakly
absorbed by biological tissues, and they can scatter across
the brain surface (Villringer and Chance, 1997). Further-
more, during data acquisition, fNIRS is applicable to both
clinical and laboratory studies, because the optical array
does not harm for infants and children’s brain. We selected
PFC because many previous studies have demonstrated
that PFC plays an important role in various high-level
cognitive functions, such as executive functions (Miller and
Cohen, 2001), decision-making (Wallis, 2007), reasoning
and planning , social cognitive and moral judgment(Forbes
and Grafman, 2010). It is possible to identify useful fea-
tures for affective computing in this field.

Many studies examined resting state functional brain
connectivity, using different experimental methods (Wang
et al., 2018; Cai et al., 2018). Moreover, functional brain
connectivity can be demonstrated by channel correlations.
For example, pearson correlation analysis (CORR) gives
the magnitude of temporal correlations, which may also
occur between anatomically disjointed regions (Rubinov
and Sporns, 2010). Beyond that, the correlation can be

An Application of Affective Computing on
Mental Disorders: A Resting State fNIRS

Study ⋆

Chunyun Wu, Jieqiong Sun, Tao Wang, Chengjian Zhao,
Shuzhen Zheng, Chang Lei, Hong Peng *

Gansu Provincial Key Laboratory of Wearable Computing, School of
Information Science and Engineering, Lanzhou University, Lanzhou
730000, China (e-mail: {wuchy18, sunjq18, wangtao2018, zhaochj18,
zhengshzh19, leich19, pengh}@lzu.edu.cn). * Corresponding author

Abstract: Affective computing is important for making computers smarter. When emotion
can be quantified, machines can understand it. This study aims to apply affective computing
to mental disorders, and to classify healthy people and mentally illnesses. For this purpose,
85 subjects, including major depressive disorder patients, schizophrenia patients, and health
control people were recruited to participate in resting state functional near infrared spectroscopy
(fNIRS) experiment. We measured the changes in oxygenated blood concentration in the
prefrontal cortex (PFC). We then used three types of correlation analysis methods to construct
the functional connectivity matrices: Pearson correlation analysis (CORR), amplitude squared
coherence coefficient (COH), and phase locking value (PLV). We performed the small-world
model and centrality analysis based on these matrices. The results demonstrated the existence of
a small-world model in both patients and healthy people’s brain networks. Furthermore, features
such as the characteristic path length and betweenness centrality extracted from the functional
connectivity matrix are helpful for classifying patients and healthy people, thus providing a
method for detecting and identifying mental disorders.

Keywords: Affective Computing, fNIRS, Brain Network, Mental Disorder

1. INTRODUCTION

Affective computing aims to improve intelligence in com-
puters by giving them the ability to recognize, under-
stand, and express human emotions. It is an interdisci-
plinary field, spanning computer science, psychology, and
cognitive science (Tao and Tan, 2005). Relevant studies
usually extract feature patterns using techniques such as
electroencephalogram (EEG) and electromyogram (EMG)
for emotion recognition from physiological signals (Shen
and Hu, 2019). Mental disorder may affect the brain under
the influence of various biological, psychological, and social
environmental factors, resulting in emotional, behavioral,
and other mental activities, most of which are accom-
panied by either brain structure or functional lesions.
Therefore, this study will apply affective computing to
analyze the resting state brain network of patients with
major depression (MDD) and schizophrenia (SCZ), and
quantify their brain activity. Note that the comparison
of the brain network with those of healthy people helps

⋆ This work was supported in part by the National Key Research
and Development Program of China (Grant No.2019YFA0706200),
in part by the National Natural Science Foundation of China
(Grant No.61632014, No.61627808, No.61210010), in part by the
National Basic Research Program of China (973 Program, Grant
No.2014CB744600), in part by the Program of Beijing Municipal
Science & Technology Commission (Grant No.Z171100000117005),
and in part by the Fundamental Research Funds for the Central U-
niversities (lzujbky-2020-66, lzujbky-2020-kb25, lzujbky-2020-kb08).

identify differences and assist in the medical diagnosis of
mental disorders.

In this study, we selected functional near infrared spec-
troscopy (fNIRS) for the data collection from the pre-
frontal cortex (PFC) region. fNIRS is easy to operate,
inexpensive, non-intrusive, and portable (Boas et al., 2004;
Piper et al., 2014). The near infrared photons are weakly
absorbed by biological tissues, and they can scatter across
the brain surface (Villringer and Chance, 1997). Further-
more, during data acquisition, fNIRS is applicable to both
clinical and laboratory studies, because the optical array
does not harm for infants and children’s brain. We selected
PFC because many previous studies have demonstrated
that PFC plays an important role in various high-level
cognitive functions, such as executive functions (Miller and
Cohen, 2001), decision-making (Wallis, 2007), reasoning
and planning , social cognitive and moral judgment(Forbes
and Grafman, 2010). It is possible to identify useful fea-
tures for affective computing in this field.

Many studies examined resting state functional brain
connectivity, using different experimental methods (Wang
et al., 2018; Cai et al., 2018). Moreover, functional brain
connectivity can be demonstrated by channel correlations.
For example, pearson correlation analysis (CORR) gives
the magnitude of temporal correlations, which may also
occur between anatomically disjointed regions (Rubinov
and Sporns, 2010). Beyond that, the correlation can be

An Application of Affective Computing on
Mental Disorders: A Resting State fNIRS

Study ⋆

Chunyun Wu, Jieqiong Sun, Tao Wang, Chengjian Zhao,
Shuzhen Zheng, Chang Lei, Hong Peng *

Gansu Provincial Key Laboratory of Wearable Computing, School of
Information Science and Engineering, Lanzhou University, Lanzhou
730000, China (e-mail: {wuchy18, sunjq18, wangtao2018, zhaochj18,
zhengshzh19, leich19, pengh}@lzu.edu.cn). * Corresponding author

Abstract: Affective computing is important for making computers smarter. When emotion
can be quantified, machines can understand it. This study aims to apply affective computing
to mental disorders, and to classify healthy people and mentally illnesses. For this purpose,
85 subjects, including major depressive disorder patients, schizophrenia patients, and health
control people were recruited to participate in resting state functional near infrared spectroscopy
(fNIRS) experiment. We measured the changes in oxygenated blood concentration in the
prefrontal cortex (PFC). We then used three types of correlation analysis methods to construct
the functional connectivity matrices: Pearson correlation analysis (CORR), amplitude squared
coherence coefficient (COH), and phase locking value (PLV). We performed the small-world
model and centrality analysis based on these matrices. The results demonstrated the existence of
a small-world model in both patients and healthy people’s brain networks. Furthermore, features
such as the characteristic path length and betweenness centrality extracted from the functional
connectivity matrix are helpful for classifying patients and healthy people, thus providing a
method for detecting and identifying mental disorders.

Keywords: Affective Computing, fNIRS, Brain Network, Mental Disorder

1. INTRODUCTION

Affective computing aims to improve intelligence in com-
puters by giving them the ability to recognize, under-
stand, and express human emotions. It is an interdisci-
plinary field, spanning computer science, psychology, and
cognitive science (Tao and Tan, 2005). Relevant studies
usually extract feature patterns using techniques such as
electroencephalogram (EEG) and electromyogram (EMG)
for emotion recognition from physiological signals (Shen
and Hu, 2019). Mental disorder may affect the brain under
the influence of various biological, psychological, and social
environmental factors, resulting in emotional, behavioral,
and other mental activities, most of which are accom-
panied by either brain structure or functional lesions.
Therefore, this study will apply affective computing to
analyze the resting state brain network of patients with
major depression (MDD) and schizophrenia (SCZ), and
quantify their brain activity. Note that the comparison
of the brain network with those of healthy people helps

⋆ This work was supported in part by the National Key Research
and Development Program of China (Grant No.2019YFA0706200),
in part by the National Natural Science Foundation of China
(Grant No.61632014, No.61627808, No.61210010), in part by the
National Basic Research Program of China (973 Program, Grant
No.2014CB744600), in part by the Program of Beijing Municipal
Science & Technology Commission (Grant No.Z171100000117005),
and in part by the Fundamental Research Funds for the Central U-
niversities (lzujbky-2020-66, lzujbky-2020-kb25, lzujbky-2020-kb08).

identify differences and assist in the medical diagnosis of
mental disorders.

In this study, we selected functional near infrared spec-
troscopy (fNIRS) for the data collection from the pre-
frontal cortex (PFC) region. fNIRS is easy to operate,
inexpensive, non-intrusive, and portable (Boas et al., 2004;
Piper et al., 2014). The near infrared photons are weakly
absorbed by biological tissues, and they can scatter across
the brain surface (Villringer and Chance, 1997). Further-
more, during data acquisition, fNIRS is applicable to both
clinical and laboratory studies, because the optical array
does not harm for infants and children’s brain. We selected
PFC because many previous studies have demonstrated
that PFC plays an important role in various high-level
cognitive functions, such as executive functions (Miller and
Cohen, 2001), decision-making (Wallis, 2007), reasoning
and planning , social cognitive and moral judgment(Forbes
and Grafman, 2010). It is possible to identify useful fea-
tures for affective computing in this field.

Many studies examined resting state functional brain
connectivity, using different experimental methods (Wang
et al., 2018; Cai et al., 2018). Moreover, functional brain
connectivity can be demonstrated by channel correlations.
For example, pearson correlation analysis (CORR) gives
the magnitude of temporal correlations, which may also
occur between anatomically disjointed regions (Rubinov
and Sporns, 2010). Beyond that, the correlation can be

An Application of Affective Computing on
Mental Disorders: A Resting State fNIRS

Study ⋆

Chunyun Wu, Jieqiong Sun, Tao Wang, Chengjian Zhao,
Shuzhen Zheng, Chang Lei, Hong Peng *

Gansu Provincial Key Laboratory of Wearable Computing, School of
Information Science and Engineering, Lanzhou University, Lanzhou
730000, China (e-mail: {wuchy18, sunjq18, wangtao2018, zhaochj18,
zhengshzh19, leich19, pengh}@lzu.edu.cn). * Corresponding author

Abstract: Affective computing is important for making computers smarter. When emotion
can be quantified, machines can understand it. This study aims to apply affective computing
to mental disorders, and to classify healthy people and mentally illnesses. For this purpose,
85 subjects, including major depressive disorder patients, schizophrenia patients, and health
control people were recruited to participate in resting state functional near infrared spectroscopy
(fNIRS) experiment. We measured the changes in oxygenated blood concentration in the
prefrontal cortex (PFC). We then used three types of correlation analysis methods to construct
the functional connectivity matrices: Pearson correlation analysis (CORR), amplitude squared
coherence coefficient (COH), and phase locking value (PLV). We performed the small-world
model and centrality analysis based on these matrices. The results demonstrated the existence of
a small-world model in both patients and healthy people’s brain networks. Furthermore, features
such as the characteristic path length and betweenness centrality extracted from the functional
connectivity matrix are helpful for classifying patients and healthy people, thus providing a
method for detecting and identifying mental disorders.

Keywords: Affective Computing, fNIRS, Brain Network, Mental Disorder

1. INTRODUCTION

Affective computing aims to improve intelligence in com-
puters by giving them the ability to recognize, under-
stand, and express human emotions. It is an interdisci-
plinary field, spanning computer science, psychology, and
cognitive science (Tao and Tan, 2005). Relevant studies
usually extract feature patterns using techniques such as
electroencephalogram (EEG) and electromyogram (EMG)
for emotion recognition from physiological signals (Shen
and Hu, 2019). Mental disorder may affect the brain under
the influence of various biological, psychological, and social
environmental factors, resulting in emotional, behavioral,
and other mental activities, most of which are accom-
panied by either brain structure or functional lesions.
Therefore, this study will apply affective computing to
analyze the resting state brain network of patients with
major depression (MDD) and schizophrenia (SCZ), and
quantify their brain activity. Note that the comparison
of the brain network with those of healthy people helps

⋆ This work was supported in part by the National Key Research
and Development Program of China (Grant No.2019YFA0706200),
in part by the National Natural Science Foundation of China
(Grant No.61632014, No.61627808, No.61210010), in part by the
National Basic Research Program of China (973 Program, Grant
No.2014CB744600), in part by the Program of Beijing Municipal
Science & Technology Commission (Grant No.Z171100000117005),
and in part by the Fundamental Research Funds for the Central U-
niversities (lzujbky-2020-66, lzujbky-2020-kb25, lzujbky-2020-kb08).

identify differences and assist in the medical diagnosis of
mental disorders.

In this study, we selected functional near infrared spec-
troscopy (fNIRS) for the data collection from the pre-
frontal cortex (PFC) region. fNIRS is easy to operate,
inexpensive, non-intrusive, and portable (Boas et al., 2004;
Piper et al., 2014). The near infrared photons are weakly
absorbed by biological tissues, and they can scatter across
the brain surface (Villringer and Chance, 1997). Further-
more, during data acquisition, fNIRS is applicable to both
clinical and laboratory studies, because the optical array
does not harm for infants and children’s brain. We selected
PFC because many previous studies have demonstrated
that PFC plays an important role in various high-level
cognitive functions, such as executive functions (Miller and
Cohen, 2001), decision-making (Wallis, 2007), reasoning
and planning , social cognitive and moral judgment(Forbes
and Grafman, 2010). It is possible to identify useful fea-
tures for affective computing in this field.

Many studies examined resting state functional brain
connectivity, using different experimental methods (Wang
et al., 2018; Cai et al., 2018). Moreover, functional brain
connectivity can be demonstrated by channel correlations.
For example, pearson correlation analysis (CORR) gives
the magnitude of temporal correlations, which may also
occur between anatomically disjointed regions (Rubinov
and Sporns, 2010). Beyond that, the correlation can be

An Application of Affective Computing on
Mental Disorders: A Resting State fNIRS

Study ⋆

Chunyun Wu, Jieqiong Sun, Tao Wang, Chengjian Zhao,
Shuzhen Zheng, Chang Lei, Hong Peng *

Gansu Provincial Key Laboratory of Wearable Computing, School of
Information Science and Engineering, Lanzhou University, Lanzhou
730000, China (e-mail: {wuchy18, sunjq18, wangtao2018, zhaochj18,
zhengshzh19, leich19, pengh}@lzu.edu.cn). * Corresponding author

Abstract: Affective computing is important for making computers smarter. When emotion
can be quantified, machines can understand it. This study aims to apply affective computing
to mental disorders, and to classify healthy people and mentally illnesses. For this purpose,
85 subjects, including major depressive disorder patients, schizophrenia patients, and health
control people were recruited to participate in resting state functional near infrared spectroscopy
(fNIRS) experiment. We measured the changes in oxygenated blood concentration in the
prefrontal cortex (PFC). We then used three types of correlation analysis methods to construct
the functional connectivity matrices: Pearson correlation analysis (CORR), amplitude squared
coherence coefficient (COH), and phase locking value (PLV). We performed the small-world
model and centrality analysis based on these matrices. The results demonstrated the existence of
a small-world model in both patients and healthy people’s brain networks. Furthermore, features
such as the characteristic path length and betweenness centrality extracted from the functional
connectivity matrix are helpful for classifying patients and healthy people, thus providing a
method for detecting and identifying mental disorders.

Keywords: Affective Computing, fNIRS, Brain Network, Mental Disorder

1. INTRODUCTION

Affective computing aims to improve intelligence in com-
puters by giving them the ability to recognize, under-
stand, and express human emotions. It is an interdisci-
plinary field, spanning computer science, psychology, and
cognitive science (Tao and Tan, 2005). Relevant studies
usually extract feature patterns using techniques such as
electroencephalogram (EEG) and electromyogram (EMG)
for emotion recognition from physiological signals (Shen
and Hu, 2019). Mental disorder may affect the brain under
the influence of various biological, psychological, and social
environmental factors, resulting in emotional, behavioral,
and other mental activities, most of which are accom-
panied by either brain structure or functional lesions.
Therefore, this study will apply affective computing to
analyze the resting state brain network of patients with
major depression (MDD) and schizophrenia (SCZ), and
quantify their brain activity. Note that the comparison
of the brain network with those of healthy people helps

⋆ This work was supported in part by the National Key Research
and Development Program of China (Grant No.2019YFA0706200),
in part by the National Natural Science Foundation of China
(Grant No.61632014, No.61627808, No.61210010), in part by the
National Basic Research Program of China (973 Program, Grant
No.2014CB744600), in part by the Program of Beijing Municipal
Science & Technology Commission (Grant No.Z171100000117005),
and in part by the Fundamental Research Funds for the Central U-
niversities (lzujbky-2020-66, lzujbky-2020-kb25, lzujbky-2020-kb08).

identify differences and assist in the medical diagnosis of
mental disorders.

In this study, we selected functional near infrared spec-
troscopy (fNIRS) for the data collection from the pre-
frontal cortex (PFC) region. fNIRS is easy to operate,
inexpensive, non-intrusive, and portable (Boas et al., 2004;
Piper et al., 2014). The near infrared photons are weakly
absorbed by biological tissues, and they can scatter across
the brain surface (Villringer and Chance, 1997). Further-
more, during data acquisition, fNIRS is applicable to both
clinical and laboratory studies, because the optical array
does not harm for infants and children’s brain. We selected
PFC because many previous studies have demonstrated
that PFC plays an important role in various high-level
cognitive functions, such as executive functions (Miller and
Cohen, 2001), decision-making (Wallis, 2007), reasoning
and planning , social cognitive and moral judgment(Forbes
and Grafman, 2010). It is possible to identify useful fea-
tures for affective computing in this field.

Many studies examined resting state functional brain
connectivity, using different experimental methods (Wang
et al., 2018; Cai et al., 2018). Moreover, functional brain
connectivity can be demonstrated by channel correlations.
For example, pearson correlation analysis (CORR) gives
the magnitude of temporal correlations, which may also
occur between anatomically disjointed regions (Rubinov
and Sporns, 2010). Beyond that, the correlation can be

An Application of Affective Computing on
Mental Disorders: A Resting State fNIRS

Study ⋆

Chunyun Wu, Jieqiong Sun, Tao Wang, Chengjian Zhao,
Shuzhen Zheng, Chang Lei, Hong Peng *

Gansu Provincial Key Laboratory of Wearable Computing, School of
Information Science and Engineering, Lanzhou University, Lanzhou
730000, China (e-mail: {wuchy18, sunjq18, wangtao2018, zhaochj18,
zhengshzh19, leich19, pengh}@lzu.edu.cn). * Corresponding author

Abstract: Affective computing is important for making computers smarter. When emotion
can be quantified, machines can understand it. This study aims to apply affective computing
to mental disorders, and to classify healthy people and mentally illnesses. For this purpose,
85 subjects, including major depressive disorder patients, schizophrenia patients, and health
control people were recruited to participate in resting state functional near infrared spectroscopy
(fNIRS) experiment. We measured the changes in oxygenated blood concentration in the
prefrontal cortex (PFC). We then used three types of correlation analysis methods to construct
the functional connectivity matrices: Pearson correlation analysis (CORR), amplitude squared
coherence coefficient (COH), and phase locking value (PLV). We performed the small-world
model and centrality analysis based on these matrices. The results demonstrated the existence of
a small-world model in both patients and healthy people’s brain networks. Furthermore, features
such as the characteristic path length and betweenness centrality extracted from the functional
connectivity matrix are helpful for classifying patients and healthy people, thus providing a
method for detecting and identifying mental disorders.

Keywords: Affective Computing, fNIRS, Brain Network, Mental Disorder

1. INTRODUCTION

Affective computing aims to improve intelligence in com-
puters by giving them the ability to recognize, under-
stand, and express human emotions. It is an interdisci-
plinary field, spanning computer science, psychology, and
cognitive science (Tao and Tan, 2005). Relevant studies
usually extract feature patterns using techniques such as
electroencephalogram (EEG) and electromyogram (EMG)
for emotion recognition from physiological signals (Shen
and Hu, 2019). Mental disorder may affect the brain under
the influence of various biological, psychological, and social
environmental factors, resulting in emotional, behavioral,
and other mental activities, most of which are accom-
panied by either brain structure or functional lesions.
Therefore, this study will apply affective computing to
analyze the resting state brain network of patients with
major depression (MDD) and schizophrenia (SCZ), and
quantify their brain activity. Note that the comparison
of the brain network with those of healthy people helps

⋆ This work was supported in part by the National Key Research
and Development Program of China (Grant No.2019YFA0706200),
in part by the National Natural Science Foundation of China
(Grant No.61632014, No.61627808, No.61210010), in part by the
National Basic Research Program of China (973 Program, Grant
No.2014CB744600), in part by the Program of Beijing Municipal
Science & Technology Commission (Grant No.Z171100000117005),
and in part by the Fundamental Research Funds for the Central U-
niversities (lzujbky-2020-66, lzujbky-2020-kb25, lzujbky-2020-kb08).

identify differences and assist in the medical diagnosis of
mental disorders.

In this study, we selected functional near infrared spec-
troscopy (fNIRS) for the data collection from the pre-
frontal cortex (PFC) region. fNIRS is easy to operate,
inexpensive, non-intrusive, and portable (Boas et al., 2004;
Piper et al., 2014). The near infrared photons are weakly
absorbed by biological tissues, and they can scatter across
the brain surface (Villringer and Chance, 1997). Further-
more, during data acquisition, fNIRS is applicable to both
clinical and laboratory studies, because the optical array
does not harm for infants and children’s brain. We selected
PFC because many previous studies have demonstrated
that PFC plays an important role in various high-level
cognitive functions, such as executive functions (Miller and
Cohen, 2001), decision-making (Wallis, 2007), reasoning
and planning , social cognitive and moral judgment(Forbes
and Grafman, 2010). It is possible to identify useful fea-
tures for affective computing in this field.

Many studies examined resting state functional brain
connectivity, using different experimental methods (Wang
et al., 2018; Cai et al., 2018). Moreover, functional brain
connectivity can be demonstrated by channel correlations.
For example, pearson correlation analysis (CORR) gives
the magnitude of temporal correlations, which may also
occur between anatomically disjointed regions (Rubinov
and Sporns, 2010). Beyond that, the correlation can be
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1. INTRODUCTION

Affective computing aims to improve intelligence in com-
puters by giving them the ability to recognize, under-
stand, and express human emotions. It is an interdisci-
plinary field, spanning computer science, psychology, and
cognitive science (Tao and Tan, 2005). Relevant studies
usually extract feature patterns using techniques such as
electroencephalogram (EEG) and electromyogram (EMG)
for emotion recognition from physiological signals (Shen
and Hu, 2019). Mental disorder may affect the brain under
the influence of various biological, psychological, and social
environmental factors, resulting in emotional, behavioral,
and other mental activities, most of which are accom-
panied by either brain structure or functional lesions.
Therefore, this study will apply affective computing to
analyze the resting state brain network of patients with
major depression (MDD) and schizophrenia (SCZ), and
quantify their brain activity. Note that the comparison
of the brain network with those of healthy people helps
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identify differences and assist in the medical diagnosis of
mental disorders.

In this study, we selected functional near infrared spec-
troscopy (fNIRS) for the data collection from the pre-
frontal cortex (PFC) region. fNIRS is easy to operate,
inexpensive, non-intrusive, and portable (Boas et al., 2004;
Piper et al., 2014). The near infrared photons are weakly
absorbed by biological tissues, and they can scatter across
the brain surface (Villringer and Chance, 1997). Further-
more, during data acquisition, fNIRS is applicable to both
clinical and laboratory studies, because the optical array
does not harm for infants and children’s brain. We selected
PFC because many previous studies have demonstrated
that PFC plays an important role in various high-level
cognitive functions, such as executive functions (Miller and
Cohen, 2001), decision-making (Wallis, 2007), reasoning
and planning , social cognitive and moral judgment(Forbes
and Grafman, 2010). It is possible to identify useful fea-
tures for affective computing in this field.

Many studies examined resting state functional brain
connectivity, using different experimental methods (Wang
et al., 2018; Cai et al., 2018). Moreover, functional brain
connectivity can be demonstrated by channel correlations.
For example, pearson correlation analysis (CORR) gives
the magnitude of temporal correlations, which may also
occur between anatomically disjointed regions (Rubinov
and Sporns, 2010). Beyond that, the correlation can be

analyzed in the frequency domain, by calculating the
amplitude squared coherence coefficient (COH). Other
studies use phase locking value (PLV) statistics to reflect
connectivity. Intuitively, if the rise or fall in the fNIRS
signal is larger than the baseline in both channels, the two
channels are synchronous, or broadly speaking, they have
high connectivity. Otherwise, if the rise or fall in the fNIRS
signal is less than the baseline value, it indicates a lack
of synchronization between the two channels, or generally
speaking, a decrease in connectivity. In this study, we
constructed brain networks as per these measurements.

The complexity of the brain network indicates that it has
similarities with the network graph, and it has significant
information transmission efficiency and local interconnec-
tivity at the global level. A small-world network is a con-
cept that has emerged from studying complex networks. If
the average shortest path length between the two vertices
of network is scaled with N as the maximum logarithm at a
fixed average point, we consider it has a small-world prop-
erty. This concept was first proposed by Duncan Watts
and Steven Strogatz in 1998 (Watts and Strogatz, 1998).
Moreover, small-world network model has multiple impor-
tant parameters (Newman, 2001; Leung and Chau, 2007),
(i) Clustering coefficient (Cp): the local efficiency in in-
formation network transfer; (ii) Characteristic path length
(Lp): the global network efficiency and parallel information
transmission ability (Latora and Marchiori, 2003); (iii)
Normalized coefficient(γ/λ): normalization clustering co-
efficient/ normalized characteristic path length; (iv) Small-
world parameters (σ): modular processing and efficient
transmission of information between network characteris-
tics modules; and (v) Global/Local efficiency (Eglob/Eloc):
measures the ability of the network information trans-
mission efficiency. By analyzing these features, this study
shows the effect of mental disorders on the PFC network
in the resting state, which may be a new approach of
early warning and detecting mental problems via affective
computing.

2. MATERIALS AND METHODS

2.1 Participants and Instrumentation

In this study, we recruited 35 MDD patients, 20 SCZ
patients and 30 healthy control (HC) individuals from a
psychiatric specialist hospital as participants. All of them
were right-handed without color blindness, and at least
had elementary education. A psychiatrist was responsible

Fig. 1. The channel layout of the experiment (The blue
dots represent the sources, the red dots represent
the detectors, and the faint yellow lines represent the
channels)

Table 1. The MNI coordinates of the channel
layout

Channel
Number

S - D X(mm) Y(mm) Z(mm)

CH01 AF7 - Fp1 -33 59 -2
CH02 AF7 - F5 -47 46 6
CH03 Fpz - Fp1 -12 67 0
CH04 Fpz - Fp2 13 67 0
CH05 Fpz - AFz 1 64 14
CH06 AF8 - Fp2 34 59 -2
CH07 AF8 - F6 48 46 5
CH08 AF3 - Fp1 -24 63 9
CH09 AF3 - F5 -39 50 17
CH10 AF3 - AFz -12 62 23
CH11 AF3 - F1 -23 52 32
CH12 AF4 - Fp2 25 63 9
CH13 AF4 - AFz 13 61 24
CH14 AF4 - F6 40 50 16
CH15 AF4 - F2 22 52 33
CH16 F3 - F5 -46 39 26
CH17 F3 - F1 -31 39 41
CH18 Fz - AFz 2 50 39
CH19 Fz - F1 -9 41 50
CH20 Fz - F2 10 41 50
CH21 F4 - F6 46 38 24
CH22 F4 - F2 30 40 41

for classifying them as either MDD, SCZ, or HC. Each of
them was asked to fill out the Patient Health Question-
naire 15 item (PHQ-15), Generalized Anxiety Disorder 7
(GAD-7), Athens Insomnia Scale (AIS) and several other
self-rating scales; moreover, they were required to sign
informed consent documents before the experiments.

Herein, we present a 22-channel fNIRS device that uses
eight dual wavelength light emitting diodes and seven
electro-optical sensors. The sampling rate of the equipment
is 7.8125Hz with two wavelengths: a long wavelength of
850nm and short wavelength of 760nm. The device was
used to measure hemodynamic responses in the subjects’
PFC. The channel layout is shown in Fig.1: the distance
between each source and each detector is ∼3 cm. Table.1
lists the MNI coordinates corresponding to the channels.

2.2 Experiment Procedure and Data Acquisition

The experiment comprises a 5-min resting state. Before the
experiment is initiated, detailed instructions are provided
to the participant to ensure that he or she understands the
process. The experimenter would then open the collecting
device and snugly and stably place the optical fibers in
the designated position. Turning on the device early aims
to avoid the drift caused by itself. Moreover, sliding in
the hair can cause signal attenuation. Although the PFC
region has less hair compared to other parts of the scalpthe
experimenter should always remove the hair and carefully
place the fibers. In this study, participants will be informed
to minimize unnecessary movements, close their eyes, and
sit on a chair while remaining quiet. The whole experiment
takes ∼15 min: Fig.2 shows the pipeline.

Fig. 2. The pipeline of the resting state experiment
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analyzed in the frequency domain, by calculating the
amplitude squared coherence coefficient (COH). Other
studies use phase locking value (PLV) statistics to reflect
connectivity. Intuitively, if the rise or fall in the fNIRS
signal is larger than the baseline in both channels, the two
channels are synchronous, or broadly speaking, they have
high connectivity. Otherwise, if the rise or fall in the fNIRS
signal is less than the baseline value, it indicates a lack
of synchronization between the two channels, or generally
speaking, a decrease in connectivity. In this study, we
constructed brain networks as per these measurements.

The complexity of the brain network indicates that it has
similarities with the network graph, and it has significant
information transmission efficiency and local interconnec-
tivity at the global level. A small-world network is a con-
cept that has emerged from studying complex networks. If
the average shortest path length between the two vertices
of network is scaled with N as the maximum logarithm at a
fixed average point, we consider it has a small-world prop-
erty. This concept was first proposed by Duncan Watts
and Steven Strogatz in 1998 (Watts and Strogatz, 1998).
Moreover, small-world network model has multiple impor-
tant parameters (Newman, 2001; Leung and Chau, 2007),
(i) Clustering coefficient (Cp): the local efficiency in in-
formation network transfer; (ii) Characteristic path length
(Lp): the global network efficiency and parallel information
transmission ability (Latora and Marchiori, 2003); (iii)
Normalized coefficient(γ/λ): normalization clustering co-
efficient/ normalized characteristic path length; (iv) Small-
world parameters (σ): modular processing and efficient
transmission of information between network characteris-
tics modules; and (v) Global/Local efficiency (Eglob/Eloc):
measures the ability of the network information trans-
mission efficiency. By analyzing these features, this study
shows the effect of mental disorders on the PFC network
in the resting state, which may be a new approach of
early warning and detecting mental problems via affective
computing.

2. MATERIALS AND METHODS

2.1 Participants and Instrumentation

In this study, we recruited 35 MDD patients, 20 SCZ
patients and 30 healthy control (HC) individuals from a
psychiatric specialist hospital as participants. All of them
were right-handed without color blindness, and at least
had elementary education. A psychiatrist was responsible

Fig. 1. The channel layout of the experiment (The blue
dots represent the sources, the red dots represent
the detectors, and the faint yellow lines represent the
channels)

Table 1. The MNI coordinates of the channel
layout

Channel
Number

S - D X(mm) Y(mm) Z(mm)

CH01 AF7 - Fp1 -33 59 -2
CH02 AF7 - F5 -47 46 6
CH03 Fpz - Fp1 -12 67 0
CH04 Fpz - Fp2 13 67 0
CH05 Fpz - AFz 1 64 14
CH06 AF8 - Fp2 34 59 -2
CH07 AF8 - F6 48 46 5
CH08 AF3 - Fp1 -24 63 9
CH09 AF3 - F5 -39 50 17
CH10 AF3 - AFz -12 62 23
CH11 AF3 - F1 -23 52 32
CH12 AF4 - Fp2 25 63 9
CH13 AF4 - AFz 13 61 24
CH14 AF4 - F6 40 50 16
CH15 AF4 - F2 22 52 33
CH16 F3 - F5 -46 39 26
CH17 F3 - F1 -31 39 41
CH18 Fz - AFz 2 50 39
CH19 Fz - F1 -9 41 50
CH20 Fz - F2 10 41 50
CH21 F4 - F6 46 38 24
CH22 F4 - F2 30 40 41

for classifying them as either MDD, SCZ, or HC. Each of
them was asked to fill out the Patient Health Question-
naire 15 item (PHQ-15), Generalized Anxiety Disorder 7
(GAD-7), Athens Insomnia Scale (AIS) and several other
self-rating scales; moreover, they were required to sign
informed consent documents before the experiments.

Herein, we present a 22-channel fNIRS device that uses
eight dual wavelength light emitting diodes and seven
electro-optical sensors. The sampling rate of the equipment
is 7.8125Hz with two wavelengths: a long wavelength of
850nm and short wavelength of 760nm. The device was
used to measure hemodynamic responses in the subjects’
PFC. The channel layout is shown in Fig.1: the distance
between each source and each detector is ∼3 cm. Table.1
lists the MNI coordinates corresponding to the channels.

2.2 Experiment Procedure and Data Acquisition

The experiment comprises a 5-min resting state. Before the
experiment is initiated, detailed instructions are provided
to the participant to ensure that he or she understands the
process. The experimenter would then open the collecting
device and snugly and stably place the optical fibers in
the designated position. Turning on the device early aims
to avoid the drift caused by itself. Moreover, sliding in
the hair can cause signal attenuation. Although the PFC
region has less hair compared to other parts of the scalpthe
experimenter should always remove the hair and carefully
place the fibers. In this study, participants will be informed
to minimize unnecessary movements, close their eyes, and
sit on a chair while remaining quiet. The whole experiment
takes ∼15 min: Fig.2 shows the pipeline.

Fig. 2. The pipeline of the resting state experiment
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2.3 Data Processing

Because of uncertain experimental factors, the motion ar-
tifacts of the fNIRS signals are produced by either uncon-
scious cough or movement. This situation is particularly
obvious in both the MDD and the SCZ groups. As per the
calculation results of coefficient variation (CV) and direct
observation of original data, 11 cases of data (5 fromMDD,
3 from SCZ, and 3 from HC) were excluded; moreover, data
from the remaining 74 participants were processed in the
next steps.

(1) Intercept the data length to 270 s, with a uniform
data length to stabilize the analysis;

(2) use the Homer2 toolbox to perform preprocessing
(Huppert et al., 2006). obtain the optical density
(OD) from the raw data by light intensity, and
then the principle component analysis (PCA, 0.95)
approach is applied to remove artifacts; and

(3) calculate blood oxygen concentration, obtain all HbO
and HbR data of each participant, and then store as
per the participant’s type;

2.4 Correlation Analysis:

The following three types of correlation coefficients are cal-
culated using the HbO and HbR data for each participant
using built-in Matlab functions. Moreover, multiple 22 by
22 brain network connectivity matrices are obtained.

Pearson Correlation Coefficient (CORR) Describes the
two time domain signals linear correlation relationship
with values ranging from -1 to 1. If the two signals are
completely negative correlation, the value is -1; however,
if both signals have a completely positive correlation, the
value is 1. Furthermore, if there is no linear correlation
between the two signals, the value is 0.

Amplitude Squared Coherence Coefficient (COH) De-
scribes the linear correlation between the two signals in
the frequency domain, the values range from 0 to 1. At a
certain frequency, if there is no correlation between these
two signals, the value is 0, and the complete correlation is
1.

Phase Locking Value (PLV) Also referred to as the
average phase coherent, it describes the relative phase
difference between the two signals, which varies from 0 to
1. These two signals’ phase difference is evenly distributed
in the region of −π to π, i.e., when there is no phase
synchronization, the value is 0. However,when the phase
difference is fixed from −π to π within a fixed value, i.e,
complete phase synchronization, the value is 1.

2.5 Network Analysis

For analyzing brain networks, we describe channels as
nodes and functional connections between channels as the
edges as per the graph theory. In all three groups, we use
Gretna Toolbox (Rubinov and Sporns, 2010) to observe
small-world properties and centrality.

Small-World For a graph G, where the number of nodes
is N. The formula representation of these metrics can

be identified as follows (Watts and Strogatz, 1998; Wang
et al., 2015; Achard and Bullmore, 2007):

Cp =
1

N

∑
i∈G

Ei

Ki (Ki − 1) /2
(1)

where Ei and Ki are the number of edges and nodes in
subgraph Gi, respectively.

Lp =
1

N(N − 1)

∑
i̸=j∈G

Dij (2)

where Dij is the shortest path length between the node i
and node j.

Eglob =
1

N(N − 1)

∑
i̸=j∈G

1

Dij
(3)

where Dij denotes the shortest path length between the
node i and node j.

Eloc =
1

N

∑
i∈G

Eglob (i) (4)

where Eglob is the global efficiency of Gi, which is a
subgraph of the neighbors of node i.

Small-world properties are defined as γ = Cnet
p /Cran

p > 1,

λ = Lnet
p /Lran

p ≈ 1, and σ = γ/λ > 1. Note that Cnet
p

and Lnet
p are the Cp and Lp of real networks, respectively.

Correspondingly, Cran
p and Lran

p are the Cp and Lp averages
of 100 matched networks (with the same number of nodes,
edges, and distributions as real brain networks). Moreover,
Eglob quantifies the information exchanged by the entire
network, while Eloc quantifies the network’s resistance
to a small number of failures. Note that Cp is inversely
proportional to the Eglob for information transfer between
network nodes using multiple parallel paths (Latora and
Marchiori, 2003, 2001). Furthermore, Eglob is easier to es-
timate compared to Cp when we examine sparse networks;
therefore, network efficiency can be used to quantify small-
world property in a network.

Centrality Studying the centrality of the network is an
approach to explore the structure of the network. The
centrality of the channel is discussed in this study. Degree
centrality is the most common and simplest approach to
measure network centrality, measured by the degree of the
node (the number of friends of users in the social network).
Betweenness centrality is then obtained by the number of
shortest paths between any two nodes in the network. If
many of these shortest paths pass through a node, the node
is considered to have high mediation centrality (Freeman,
1977).

3. RESULTS AND ANALYSIS

3.1 Correlation Coefficients

We performed a statistical analysis of the correlation co-
efficient matrices and calculated their mean value (mean)
and standard deviation (SD), which are shown in Table.2.
Furthermore, they are normally distributed as confirmed
by the Q-Q graph. Because the correlation coefficient
matrix is symmetric along the diagonal, we extract the

Table 2. Mean value and standard deviation of correlation coefficients

Group

(mean ± SD)
CORR COH PLV

HbO∗∗ HbR HbO∗∗ HbR∗ HbO∗∗ HbR

HC 0.74 ± 0.077 0.43 ± 0.128 0.68 ± 0.080 0.42 ± 0.081 0.67 ± 0.073 0.45 ± 0.085
MDD 0.74 ± 0.085 0.44 ± 0.131 0.68 ± 0.084 0.40 ± 0.084 0.67 ± 0.080 0.47 ± 0.089
SCZ 0.78 ± 0.070 0.43 ± 0.144 0.72 ± 0.069 0.42 ± 0.082 0.73 ± 0.062 0.47 ± 0.093

∗ p <0.01, ∗∗ p <0.001

correlation coefficients from the lower half of the triangle
for one-way ANOVA analysis and post-hoc test. The re-
sults of the group comparison demonstrate that, except for
CORR and PLV calculated by HbR, the other four groups
are statistically significant (p < 0.01). Moreover, multiple
comparisons of the four groups of data demonstrate that
SCZ is significantly different from the other two groups
(p < 0.001) for CORR, COH and PLV calculated by HbO;
however, MDD is significantly different from the other two
groups (p < 0.05) for the COH calculated by HbR.

Furthermore, we performed a t-test on the three types of
correlation coefficients for pairwise comparison. Because
the two sample t-test requires samples with the same
dimension, we randomly selected 17 samples from HC and
MDD. The results of the t-test can be observed in the
matrices in Fig.3. Channels showing significant differences
(p< 0.05) are marked with dark colors in the third column.
To summarize, both MDD and SCZ show little difference,
while HC shows considerable difference with the other two
groups. Consistent with the previous one-way ANOVA
analysis, the difference between HC and SCZ is obvious
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Fig. 3. T-test results of connection matrices (The left two columns of each subgraph are the correlation coefficient
matrices on average for each group. Moreover, the right column shows the t-test results, and the dark squares
indicate that the two channels corresponding to this point are significantly different between different groups
(p < 0.05). The three rows above are calculated from the HbO data, and the three rows below are calculated from
the HbR data. The three rows are HC and MDD, HC and SCZ, and MDD and SCZ for comparison, where (a) is
calculated by CORR; (b) is calculated by COH; (c) is calculated by PLV)
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Table 2. Mean value and standard deviation of correlation coefficients

Group

(mean ± SD)
CORR COH PLV

HbO∗∗ HbR HbO∗∗ HbR∗ HbO∗∗ HbR

HC 0.74 ± 0.077 0.43 ± 0.128 0.68 ± 0.080 0.42 ± 0.081 0.67 ± 0.073 0.45 ± 0.085
MDD 0.74 ± 0.085 0.44 ± 0.131 0.68 ± 0.084 0.40 ± 0.084 0.67 ± 0.080 0.47 ± 0.089
SCZ 0.78 ± 0.070 0.43 ± 0.144 0.72 ± 0.069 0.42 ± 0.082 0.73 ± 0.062 0.47 ± 0.093

∗ p <0.01, ∗∗ p <0.001

correlation coefficients from the lower half of the triangle
for one-way ANOVA analysis and post-hoc test. The re-
sults of the group comparison demonstrate that, except for
CORR and PLV calculated by HbR, the other four groups
are statistically significant (p < 0.01). Moreover, multiple
comparisons of the four groups of data demonstrate that
SCZ is significantly different from the other two groups
(p < 0.001) for CORR, COH and PLV calculated by HbO;
however, MDD is significantly different from the other two
groups (p < 0.05) for the COH calculated by HbR.

Furthermore, we performed a t-test on the three types of
correlation coefficients for pairwise comparison. Because
the two sample t-test requires samples with the same
dimension, we randomly selected 17 samples from HC and
MDD. The results of the t-test can be observed in the
matrices in Fig.3. Channels showing significant differences
(p< 0.05) are marked with dark colors in the third column.
To summarize, both MDD and SCZ show little difference,
while HC shows considerable difference with the other two
groups. Consistent with the previous one-way ANOVA
analysis, the difference between HC and SCZ is obvious
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Fig. 3. T-test results of connection matrices (The left two columns of each subgraph are the correlation coefficient
matrices on average for each group. Moreover, the right column shows the t-test results, and the dark squares
indicate that the two channels corresponding to this point are significantly different between different groups
(p < 0.05). The three rows above are calculated from the HbO data, and the three rows below are calculated from
the HbR data. The three rows are HC and MDD, HC and SCZ, and MDD and SCZ for comparison, where (a) is
calculated by CORR; (b) is calculated by COH; (c) is calculated by PLV)
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Fig. 4. The small-world properties and the network efficiency in a range of sparsity thresholds (20%-50%, 1% intervals).
((a) The small-world properties and the network efficiency of the real network and matched random network. The
left three figures are the clustering coefficient (Cp), characteristic path length (Lp), and small-world parameters
(σ), whereas the right two figures are global efficiency (Eglob) and local efficiency (Eloc). (b) The paired comparison
of different groups on characteristic path length (Lp) and global efficiency (Eglob)) low sparsity threshold region.
This may indicate that SCZ has a low global efficiency under a small sparsity threshold than the other two groups

in all correlation coefficients calculated by HbO; however,
that between HC and MDD is more obvious in COH
calculated by HbR.

3.2 Small-world Properties

Three groups have small-world properties as the delta
parameter is > 1 at all sparsity thresholds (20%-50%, 1%
intervals). Fig.4(a) shows the small-world properties of the
real network and the Cp and Lp of the matched random
network. Note that both Cp and Lp of the real brain
network are significantly higher than a random network.

As shown in Fig.4(a), Lp and Eglob of SCZ are significantly
different from the other two groups when the sparsity is be-
tween 0.25 and 0.4. Therefore, for additional verification,
Lp and Eglob are extracted and drafted in Fig.4(b). For HC
and SCZ, the Lp of SCZ is significantly higher than that
of HC between 0.25 and 0.42; however, the Eglob of SCZ is
significantly lower than that of HC between 0.25 and 0.44,
which conforms to the reciprocal relationship between Lp

and Eglob in the formulaic definition. Note that similar
differences are observed between MDD and SCZ, but are
not as obvious as both HC and SCZ; however, they show
significant differences in the low sparsity threshold region.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Channel (1-22)

0

2

4

6

B
e

tw
e

e
n

n
e

ss
 C

e
n

tr
a

li
ty

HC

MDD

SCZ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Channel (1-22)

0

1

2

3

4

5

D
e

g
re

e
 C

e
n

tr
a

li
ty

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Channel (1-22)

0

2

4

6

B
e

tw
e

e
n

n
e

ss
 C

e
n

tr
a

li
ty

HC

MDD

SCZ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Channel (1-22)

0

1

2

3

4

5

D
e

g
re

e
 C

e
n

tr
a

li
ty

(b)

Fig. 5. Degree centrality and betweenness centrality of three groups. (The dotted line marks the median of the centrality
value: (a)calculated by HbO data and (b)calculated by HbR data)

This may indicate that MDD has a high global efficiency
under small sparsity threshold than other two groups.

3.3 Centrality

Fig.5 shows the degree centrality and betweenness central-
ity of all 22 channels. Degree centricity shows good consis-
tency in both HbO and HbR data of three groups. There
is a higher value concentrate upon channel 5,10,13,15, and
18 (nodes). With the channel layout, these channels are
located in the middle of the network, which is consistent
with the actual situation. However, the intensity of be-
tweenness centrality on the various channels is somewhat
mixed, because these three groups of data show signifi-
cant differences for certain channels. Some studies have
demonstrated similar results (Sun et al., 2019). Therefore,
betweenness centrality can also be used as an indicator
of affective computing to evaluate the effects of mental
disorders on PFC regions.

4. CONCLUSION

In this study, we used the fNIRS method to collect the
resting state data of MDD, SCZ, and HC for the PFC
region. The correlation of three datasets was calculated
from the time domain, frequency domain, and phase do-
main. Moreover, based on correlation coefficient matrices,
small-world model parameters such as Cp, Lp and other
network model parameters such as degree centrality and
betweenness centrality is calculated. The results suggest
that mental disorders damage the local connectivity of
the functional brain networks of patients, which is con-
sistent with the results of earlier studies (Li et al., 2017).
Moreover, we predicted that the fNIRS method will be
used to design a portable machine to participate in the
predictive or detection of mental disorders. In the fol-
lowing study, based on what we have performed, a task-
state experiment can be designed to further explore the
impact of mental disorders on brain functional networks
and to identify additional effective and reliable methods
of affective computing.
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