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Abstract—Tens of millions of people suffer from depression
worldwide. It is urgent to explore an effective method for
diagnosing depression. This study developed a novel of multi-
modal feature fusion depression recognition method based on
functional near-infrared spectroscopy (fNIRS). Sixty volunteers,
including thirty patients with depression and thirty healthy
controls, participated in the study. The 22-channel fNIRS device
recorded the participants’ brain oxyhemoglobin (HbO) and
deoxyhemoglobin (HbR) concentration changes in the positive,
neutral and negative affective words’ stimulation. K-nearest
neighbors (KNN) and support vector machine (SVM) classifiers
were used to recognize depressed patients from normal people,
and 10-fold cross-validation was used to verify the classification
result. Under the three single-mode features, the accuracy rates
were 85.69%, 88.32% and 86.77%, corresponding to the positive
condition, neutral condition and negative condition. Then, we
used concatenation and linear combination for feature fusion.
For the concatenation fusion method, the principal component
analysis (PCA) was used to reduce the dimension. The result
showed that feature fusion can relatively improve the recognition
rate of people with depression, compared with single-model
features. The optimal feature fusion method is to concatenate
the neutral features and negative features, and the best accuracy
reaches 94.45%. The study may provide a more accurate and
convenient method for depression detection.

Index Terms—depression, functional near-infrared spec-
troscopy (fNIRS), feature fusion, support vector machine (SVM),
k-nearest neighbor (KNN)

I. Introduction

Depression is a common mental illness characterized by
persistent low mood and slow thinking states [1] [2]. Accord-
ing to incomplete statistics, 340 million human beings suffer
from depression pain [3] [4]. Depression has a serious impact
on patients’ mental and physical health [5]. It is reported
that approximately one million people commit suicide every
year due to depression [6]. Depression can be measured and
evaluated based on perceptual, behavioral and physiological
responses [7]. Traditionally, depression was diagnosed by a
doctor based on a questionnaire. However, the method of eval-
uating depression based on questionnaires is more subjective
and more dependant on doctors clinical experience [8] [9];
thus finding an objective and effective depression detec-
tion method is essential. Assessing depression by monitoring
changes in physiological signals is an objective and convincing
method [10]. Functional near-infrared spectroscopy (fNIRS) is
one of the most commonly used neuroimaging techniques for

researching brain activities and conditions [11] [12] and it is
commonly used to detect depression.

The fNIRS device records the changes in optical intensity
before and after infrared light passes through the cerebral
cortex. Then the modified Beer-Lambert law is utilized to
convert the optical intensity to concentrations of oxygen-
hemoglobin (HbO) and deoxygen-hemoglobin (HbR) [13].
Studies have shown that when stimulated, the concentration of
HbO in the brain increases and HbR decreases [14]. For the
same stimulus task, people with depression and healthy people
have different levels of prefrontal activation [29]. Several
experts have performed research on identifying depression
based on fNIRS signals. In 2014, Ryu Takizawa et al. [16]
conducted a multi-site study and the results showed that the
frontal hemodynamic detected by fNIRS accurately distin-
guished people with depression from normal people. This
study demonstrated that fNIRS may be used as a tool in
assisting the diagnosis of major depression. Song et al. [17]
achieved a classification accuracy of 86.77% using SVM to
distinguish between MDD patients and healthy adults from
fNIRS data collected while participants performed a cognitive
task, which illustrated the feasibility of discriminating people
with depression from healthy people through fNIRS signals.

Previous studies on depression recognition by fNIRS ex-
tracted features in a single mode. However, the features from
a single mode cannot fully reflect the brain activities of
the subjects. In recent years, the technology of combining
information in multiple modalities through feature fusion
has become increasingly popular in various areas [18]. The
fusion of EEG signals under positive and negative audio
stimuli obtained higher depression recognition accuracy rates
compared with individual modalities [19]. Alghowinem et
al. [20] fused paralinguistic, head pose and eye gaze features
for depression detection and found that fusing all modalities
shows a remarkable improvement compared to the unimodal
system. Their research results show that fused features show
better performance than single-mode features in identifying
depression.

This paper proposed a method of fusing fNIRS data in dif-
ferent modes to obtain the normalized features in the combined
mode and created a depression classification model under
multimodal fNIRS data. We first extracted fNIRS features of
depressed patients and normal people in three single modes
of positive, neutral and negative. Then SVM and KNN were

20
20

 I
E

E
E

 I
nt

er
na

tio
na

l C
on

fe
re

nc
e 

on
 B

io
in

fo
rm

at
ic

s 
an

d 
B

io
m

ed
ic

in
e 

(B
IB

M
) 

97
8-

1-
72

81
-6

21
5-

7/
20

/$
31

.0
0 

©
20

20
 I

E
E

E
 D

O
I:

 1
0.

11
09

/B
IB

M
49

94
1.

20
20

.9
31

35
49

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on August 19,2023 at 11:35:01 UTC from IEEE Xplore.  Restrictions apply. 



2907

used to classify patients and the healthy in single modes. On
the basis of single-mode features, we used linear combination
and concatenation to perform feature fusion of different modes.
By comparing the classification accuracy of single modes and
fusion modes, we obtained the optimal combination method.

II. Materials and methods

A. Participant

Sixty subjects, including 30 patients with depression, and
30 normal controls, participated in the study. All depressed
subjects were selected from the diagnosed patients in the
hospital and their PHQ-9 scores were greater than or equal to
5, diagnostic criteria of MINI met the criteria of depression.
The depression group ranged in age 32±9.91, the control group
ranged in age 39±9.5. All participants signed informed consent
forms before the experiment.

B. Experimental Procedure

The experiment was conducted in a quiet and empty room.
During the experiment, the subjects were asked to stare at the
words that appeared on the screen and then press button based
on the word’s color. The experiment consisted of three parts.
Pre-experiment: Before the formal experiment, a 12-word
preliminary experiment was used to familiarize the subjects
with the experimental process. Resting time: To ensure that
the patient’s attention was focused during the task, there
was a rest period before the start of each stimulation task.
Stimulus task: The formal experiment involved three kinds of
stimulation: positive word stimuli, neutral word stimuli and
negative word stimuli. Thirty-two trials for each stimulus, and
each word was displayed for five seconds£after each word
ended, a ”+” appeared for 2 seconds on the screen. Fig. 1
shows experimental flowchart. As displayed in Fig. 2, the
22-channel fNIRS data of the prefrontal lobe were collected
synchronously in this study.

C. FNIRS Data Preprocessing

The raw signals recorded by fNRIS equipment are two-
wavelength (760nm and 850nm) optical intensity of 22 chan-
nels of prefrontal lobe. The sampling rate is 7.81Hz in the
experiment. In the process of collecting experimental data, it
is inevitable that some noise signals will be introduced. There
are generally three types of noise in functional near-infrared
signals (fNIRS): (a). physiological signals, including heartbeat
(1Hz-2Hz), respiration (0.4Hz) and blood pressure (0.1Hz)
signals; (b). high-frequency noise caused by hair interference
and the contact of optodes to the head; (c). motion artifacts
are mainly composed of head movement, eye movement and
blinking. There are three manifestations of motion artifacts: a
high-frequency spike, a shift from baseline intensity and low-
frequency variations. Among them, high amplitude and high
frequency spikes are easily detectable and removed, yet lower
frequency content is harder to distinguish from normal hemo-
dynamic signals. Commonly used methods to remove motion
artifacts are spline interpolation [21], principal component
analysis (PCA) [22], wavelet filtering [23], correlation-based

Fig. 1: Experimental flowchart.

signal improvement(CBSI) [24] and Kalman filtering [25]. In
this article, we used spline interpolation to remove artifacts.
The preprocessing was completed in the Homer2 toolbox of
MATLAB. The detialed flow is as follows.

1) Bad trials/channels rejection: Remove bad trial-
s/channels through visual inspection and calculation of
coefficient of variation (CV = σ

μ
× 100%, where μ

represents the mean value of trial or channel, and σ
represents the standard deviation. Rejection trials with
CVtrial > 5% and channels with CVchannel > 15%).

2) Optical intensity to optical density (OD): Convert the
optical intensity signals to optical density according to
the modified Lambert-Beer Law (OD = log(IO/II), IO

refers to the intensity of outgoing light, II refers to the
intensity of the input light).

3) Motion correction: Spline interpolation (First, detect
artifacts segment by the moving standard deviation. The
period of motion artifact is then modeled via a cubic
spline interpolation. Finally, subtract the interpolation
from the original signal and adjust the mean value).

4) Bandpass filter (0.01Hz-0.2Hz).
5) OD to hemoglobin (HbO, HbR).
6) Block average (-1s 6s): Calculate the block average

given the stimulation conditions in seconds over the time
range. The baseline of the average is set to zero by
subtracting the mean of the average for t<0. If a stimulus
occurs too close to the start or the end of the data such
that time range extends outside of the data range, then
the trial is excluded from the average.
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Fig. 2: Electrode location and channel map.

As the preprocessing was completed, we obtained the pure
block average signal of 60 subjects. Next, we will extract
features for each channel of 60 subjects.

D. Feature Extraction

We extracted five metrics of HbO and HbR respective-
ly. They were the mean value, standard deviation, beta
value, area under curve and the left slope. Thus we ob-
tained a 600 × 22 dimensions feature matrix, where 600
(60sub jects × 5metrics × 2Hb) refers to the number of sam-
ples, and 22 represents the number of features for each
sample. The feature matrix was normalized by the mapminmax
function in MATLAB. The function formula is as equation (1)

y =
x − xmin

xmax − xmin
(1)

E. Feature Fusion

Information fusion can be divided into three levels: feature-
level fusion, score-level fusion and decision-level fusion.
Feature-level fusion refers to combining features from differ-
ent modes to obtain fusion features. Score fusion refers to the
fusion of matching scores corresponding to each feature in a
single mode. Decision-level fusion refers to making decisions
on different feature subsets and then synthesizing their results
to obtain the final classification result.

Feature-level fusion was utilized in the present study. There
are two feature fusion methods: linear combination and con-
catenation. In the previous section, we extracted the HbO
and HbR features of the subjects under the positive, neutral
and negative stimuli respectively, and obtained the feature
matrix under the three single modes. Denoted as Upos =

(u1, u2, ..., um), Vneu = (v1, v2, ..., vm), Wneg = (w1,w2, ...,wm).
Where, Upos represents the feature matrix in the positive
emotion word stimulation mode, Vneu represents the feature
matrix in the neutral emotion word stimulation mode, and Wneg

represents the feature matrix in the negative emotion word
stimulation mode.

The fusion matrix obtained by linear combination can be
expressed as follows:

Lpos−neu = k1 × Upos + k2 × Vneu (2)

Lpos−neg = k1 × Upos + k3 × Wneg (3)

Lneu−neg = k2 × Vneu + k3 × Wneg (4)

Lpos−neu represents the linear combination of the feature
matrix under positive stimulation and neutral stimulation,
Lpos−neg represents the linear combination of the feature matrix
under positive stimulation and negative stimulation, Lneu−neg

represents the linear combination of feature matrix under
neutral stimulation and neutral stimulation. Where, k1, k2, and
k3 are linear combination coefficients, which represent the
weight coefficients of the feature matrix under three modes
of positive, neutral and negative, respectively. In this article,
weight coefficient used two value methods:

1) Assume that the three single-mode features have equal
weights, that is, k1 = k2 = k3.

2) The weights of the three single-mode features are differ-
ent. The classification accuracy of the three single-mode
features served as the combination coefficient. k1, k2, and
k3 respectively represented the classification accuracy of
the positive stimuli, neutral stimuli and negative stimuli.

In the concatenation method, the features from the different
single modes were concatenated along the horizontal direc-
tion to yield a multimodal feature matrix. In our study, the
fusion matrix obtained by concatenation can be expressed as
equation(5)(6)(7)
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Fig. 3: (a)The hemoglobin of subject 9 channel 1 in depression group (b)The hemoglobin of subject 45 channel 1 in normal group

Ppos−neu = [Upos Vneu] (5)

Ppos−neg = [Upos Wneg] (6)

Pneu−neg = [Vneu Wneg] (7)

where Ppos−neu represents the fusion matrix obtained by
concatenating the feature matrix in the positive stimulation
mode and the neutral stimulation mode, Ppos−neg represents
the fusion matrix obtained by concatenating the feature matrix
in the positive stimulation mode and the negative stimulation
mode, Pneu−neg represents the fusion matrix obtained by con-
catenating the feature matrix in the neutral stimulation mode
and the negative stimulation mode. Since the dimension of
the fusion matrix obtained by concatenating will increase to
twice the original, principal component analysis (PCA) was
used to reduce the dimension of the fusion matrix obtained by
concatenating.

Principal component analysis (PCA): The principal com-
ponent analysis method is one of the most widely used data
dimensionality reduction algorithms. The main idea of PCA
is to map n-dimensional features to k-dimensions. This k-
dimension is a brand-new orthogonal features, also called
principal component, which is reconstructed on the basis of
the original n-dimensional features [26].

F. Classifier

1) KNN: KNN is a commonly used supervised learning
method, and its working mechanism is very simple: find the K
points in the training set that are closest to the test sample, and
according to the principle of voting, select the category that
appears more in these K samples as the prediction result [27].

2) SVM: The basic idea of SVM for binary classification is
to find a hyperplane that can divide the training samples into
two categories with the largest interval [28], and then predict
the category of the test sample based on the position of the

test sample in the feature space. The kernel function used in
this study was “RBF”.

In this study, accuracy, precision and recall as metrics were
utilized to assess the classification performance of the model.

III. Results

A. Single mode

Some research results have shown that when stimulated by
the outside world, the concentration of HbO in the human
brain will increase, while the concentration of HbR will
decrease, and the brain activation levels of healthy people and
patients with depression are different. As shown in Fig. 3 (a)
displays oxyhemoglobin and deoxyhemoglobin concentration
of subject 9 channel 1 in the depression group, (b) displays the
oxyhemoglobin and dexhemoglobin concentration of subject
45 channel 1 in the normal group. Thus, we extracted the
features of HbO and HbR under the positive, neutral and
negative stimuli. Then the extracted features were fed into
SVM and KNN to recognize the depressed patients from
healthy people under the three single modes. In Table I, the
classification accuracy, precision and recall under single modes
are displayed. Among them, Upos refers to the feature matrix
under the positive stimulus, Vneu refers to the feature matrix
under the neutral stimulus, Wneg refers to the feature matrix
under the negative stimulus.

B. Fusing mode

Because the features collected in a single mode cannot fully
represent the characteristics of the sample, that is, it cannot
fully reflect the separability information of the sample. In
addition, the brain activation area are different under different
types of emotional words stimuli [29]. Through multimode
fusion, multiple features can achieve complementary advan-
tages, thereby improving the classification accuracy of system
differentiation.
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TABLE I: Accuracy, precision and recall of all single modes and fusing modes.

Accuracy(%) Precision(%) Recall(%)
KNN SVM mean KNN SVM mean KNN SVM mean

Upos 86.15 85.24 85.70 84.79 83.87 84.33 87.45 86.67 87.06
Vneu 87.23 89.41 88.32 84.43 89.19 86.81 90.56 90.91 90.74
Wneg 85.23 88.32 86.78 84.11 81.82 82.97 87.04 84.38 85.71

Apos−neu 85.39 87.19 86.29 86.87 88.89 87.88 86.06 88.89 87.48
Apos−neg 85.69 89.00 87.35 89.00 85.71 87.44 84.89 88.24 86.57
Aneu−neg 90.77 90.10 90.43 94.00 92.31 93.16 88.04 90.42 89.23

Lpos−neu 85.54 86.39 85.96 87.05 86.67 86.86 86.05 87.50 86.78
Lpos−neg 85.85 89.59 87.72 88.75 88.24 88.50 84.49 88.89 86.89
Lneu−neg 90.46 90.83 90.65 93.99 88.24 91.12 87.74 87.88 87.81

Ppos−neu 89.54 89.75 89.64 88.14 88.89 88.52 88.19 88.57 88.38
Ppos−neg 87.85 92.66 90.25 87.66 92.96 90.26 88.19 86.67 87.43
Pneu−neg 94.77 94.13 94.45 95.09 90.32 92.71 92.94 96.55 94.75

#:Upos, Vneu, Wneg are the feature matrix under positive, neutral and negative stimuli, respectively.
Apos−neu, Apos−neg, Aneu−neg represent the fusion matrix obtained by linear combination when k1 = k2 = k3 = 1.
Lpos−neu, Lpos−neg, Lneu−neg represent the fusion matrix obtained by linear combination when k1 = 0.86, k2 = 0.88, k3 = 0.87.
Ppos−neu, Ppos−neg, Pneu−neg represent the fusion matrix obtained by concatenating.

single k1=k2=k3=1
k1=0.86,k2=0.88,

k3=0.87
concatenate

Accuracy 87.66% 88.76% 88.94% 92.18%

Precision 84.96% 88.97% 87.72% 90.69%

Recall 87.32% 89.18% 88.09% 90.60%

84.00%

85.00%

86.00%

87.00%

88.00%

89.00%

90.00%

91.00%

92.00%

93.00%

Accuracy

Precision

Recall

Fig. 4: The average classification performances comparison of all fusing modes and single modes when using SVM as the classifier
(The accuracy, precision and recall rate in the figure refer to the average value under single mode and each fusion mode).

1) Linear combination:

When the three modes take the same weights for linear
combination, that is k1 = k2 = k3 = 1, the feature matrixes are
represented as follows:

Apos−neu = Upos + Vneu (8)

Apos−neg = Upos +Wneg (9)

Aneu−neg = Vneu +Wneg (10)

The three modes take different weights. According to the
classification results of the single mode, positive: 85.70%,
neutral: 88.32%, and negative: 86.78%, we take the weights
of the three modes of positive, neutral and negative in order

k1 = 0.86, k2 = 0.88, k3 = 0.87. Taking the weights of
the three modes as the combination coefficient of the linear
combination, the resulting fusion matrix is as follows:

Lpos−neu = 0.86 × Upos + 0.88 × Vneu (11)

Lpos−neg = 0.86 × Upos + 0.87 × Wneg (12)

Lneu−neg = 0.88 × Vneu + 0.87 × Wneg (13)

The classification results of linear combination modes are
shown in Table I when using accuracy, precision and recall as
metrics. We can see that SVM performs better than KNN in
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pos-neu pos-neg neu-neg

single 85.96% 88.32% 86.78%

k1=k2=k3=1 86.29% 87.35% 90.43%

k1=0.86,k2=0.88,k3=0.87 85.96% 87.72% 90.65%

concatenation 89.64% 90.25% 94.45%
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Fig. 5: Classification accuracy under fusing mode and single mode (single modes order is positive, neutral, negative).

pos-neu pos-neg neu-neg

single 85.24% 89.41% 88.32%

k1=k2=k3=1 87.19% 89.00% 90.10%

k1=0.86,k2=0.88,k3=0.87 86.39% 89.59% 90.83%
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single k1=k2=k3=1 k1=0.86,k2=0.88,k3=0.87

Fig. 6: The classification accuracy comparison of linear combination
modes and single modes when using SVM as classifier (single modes
is positive, neutral, negative).

general in our study. Fig. 6 displays the classification accuracy
comparison of two linear combination strategies and single
modes when using SVM as the classifier. The results show
that compared with the single-mode classification results, the
accuracy of depression recognition through feature fusion by
linear combination improved slightly, but there is not much
difference between the two different weight coefficients.

2) Concatenation:
The concatenating features method in two different modes

was used to obtain a new feature matrix and classify de-
pressed patients and healthy people on the obtained fusion
features. This method can synthesize the characteristics of
different modes, thereby improving the recognition accuracy
of the model. However, the dimension of the feature matrix
obtained by concatenating is twice the dimension of the feature
matrix in a single mode and some redundant information
was introduced to our model. As the dimension increased,
the computational complexity also increased greatly, so we
need to reduce the dimension of the feature matrix. In this
article, we used PCA to reduce the dimension of the feature
matrix. The classification results of concatenation modes are

pos-neu pos-neg neu-neg

single 85.24% 89.41% 88.32%

concatenation 89.75% 92.66% 94.13%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

single concatenation

Fig. 7: The classification accuracy comparison of concatenating
modes and single modes when using SVM as the classifier (single
modes order is positive, neutral, negative).

shown in Table I. The classification accuracy comparison of
concatenating modes and single modes when using SVM as
the classifier are shown in Fig. 7.

It can be seen from the previous results that SVM performs
better than KNN in general. For single modes, the feature
matrix extracted under the stimulation of neutral words ob-
tained the best classification results, the average accuracy was
88.32%, the average precision was 86.81%, the average recall
was 90.74%. For the fusion modes, whether it was the fusion
method of linear combination or the fusion method of concate-
nation, the best recognition modality in fusion modalities was
the fusion of neutral and negative word stimuli. For all modes,
the KNN classifier obtained the best depression recognition
in the concatenating modality of neutral and negative word
stimuli, and the accuracy was 94.77%.

Fig. 4 shows the comparison of classification performance
between single modes and fusion modes when SVM as the
classifier. Fig. 5 shows the average classification accuracy
rate under all fusion modes and single modes. It can be
seen from the results of Fig. 4 and Fig. 5 that the clas-
sification accuracy, precision and recall obtained by fusing
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modes apparently improved compared with the single modes.
In addition, the classification result obtained by the fusion
method of concatenating was better than the result obtained
by linear combination. There was no significant difference in
the classification accuracy obtained by the two different linear
combination methods.

IV. Conclusion

In this study, we proposed a method of identifying patients
with depression among healthy people using feature fusion
based on the fNIRS technique. First, we studied the discrimi-
nation accuracy of depression in three single modes: positive,
neutral and negative. To research depression recognition under
fusing features, linear combination and concatenation were
used to perform information fusion at the feature level. The
three fusion matrixes were pos-neu, pos-neg, and neu-neg.
We found that the method of identifying depression by fusing
features can improve the recognition accuracy. In addition, the
results showed that there was no obvious difference in classi-
fication accuracy under two different combination coefficients
(k1 = k2 = k3 = 1, or k1 = 0.86, k2 = 0.88, k3 = 0.87). We also
found that feature fusion by concatenation can provide more
accurate diagnostic results for depression detection, compared
with the linear combination. On comparing the classification
accuracy in different fusion modalities, we found that the best
classification result was obtained by concatenating the neutral
features and negative features for feature fusion, with the high-
est accuracy of 94.45%. Different from previous methods for
identifying depression with single-mode features, multimode
fusion can effectively improve the accuracy of depression
recognition. The multimodality fusion method proposed in this
paper will provide a more objective and effective method for
the diagnosis of depression.
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